
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Incremental CFP-Tree Optimization For Efficient

Representative Pattern Set Mining

Vivek Satpute
1
, Prof. Digambar Padulkar

2

1, 2 Savitribai Phule Pune University, Department of Computer Engineering, VPCOE, Baramati, Maharashtra, India.

Abstract: In the area of data mining frequent pattern mining is a significant hitch. Frequent pattern mining is more often performed

on a transaction database that contains set of items. A pattern is frequent pattern when it has bigger support than user define threshold.

For mining frequent patterns numerous capable algorithms have been developed. However, RPglobal is awfully time-consuming and

space-consuming. Barely it becomes realistic when the number of frequent patterns is not large. RPlocal is dreadfully efficient,

although it produces extra representative patterns than RPglobal. Here, two algorithms MinRPset and FlexRPset are in picture.

Algorithm MinRPset is comparable to RPglobal, but it utilizes numerous techniques to diminish the running time and memory usage.

CFP-tree structure is used in MinRPset, it is a tree structure. FlexRPset provides one parameter K in addition, which allows users to

build a swap between efficiency and the number of representative patterns that he has chosen. Use of the techniques is supportive to

improve the effectiveness of MinRPset by considering closed patterns only and by using a structure called CFP-tree to find C(X)s

efficiently.

Keywords: pattern, closed pattern, covering pattern, representative pattern

1. Introduction

Representative pattern is a pattern that covers the all patterns

of the cluster from that it belongs[1]. Mining of frequent

pattern was initially put forwarded by Agrawal et al.[2]

in1993 for market basket analysis in the form of association

rule mining. That examines buying behavior of customer by

discovering associations between the different items that

customers buys from market and places it in their shopping

baskets. In data mining, frequent pattern mining is an

essential problem. Frequent itemsets carry necessary role in

lots of data mining assignment that aims to discover

attractive patterns from databases. Technically, frequent

pattern mining is the method of discovering relationships or

patterns among massive databases. Pattern mining is not only

the extraction of unseen analytical information from huge

databases, but it is a amazing technology with enormous

potential to assist companies to focus on the most significant

information into their data warehouses. Pattern mining is the

technique that is able to respond business queries that

traditionally were very time consuming to solve. Discovering

the frequent patterns has specific importance in mining

associations, correlations and different other motivating

relationships among data. Additionally, it also helps out in

data indexing, clustering, classification, and many other tasks

of data mining.

After clustering there may have lots of frequent patterns. And

those patterns are of huge in numbers, like in thousand, even

sometimes millions in numbers. As it is depends on threshold

that user sets, it may differ for different threshold. These

patterns again become overhead some times for

understanding relations among them and for further

processing too. So there is need of something that will

become solution for this. Then the approach of one

representative pattern for one cluster comes in picture. This

pattern covers all remaining patterns of the cluster. It will

become a representative of all patterns that are in same

cluster. And further try to make these representative patterns

as less as possible. So these few can be representative of

huge. The minimum number of these representative pattern

then can be easy to process, easy to understand and easy to

handle. Ultimately finding representative pattern from

frequent pattern is now center of attraction.

2. Literature Survey

Xin et al. [3] proposed concept of δ-covered to make simpler

the concept of frequent closed pattern. The aim is to discover

a minimum set of representative patterns that can δ- cover all

frequent patterns. They conclude that the set cover problem

can be relate to the main problem, and they build up two

algorithms, RPglobal and RPlocal. RPglobal first generates

the set of patterns that can be δ-covered by each pattern, and

then employs the well-known greedy algorithm for the set

cover problem to discover representative patterns. First, both

RPglobal and RPlocal are clever to discover a subset of

representative patterns; second, even if RPlocal gives extra

patterns than RPglobal, the feat of RPlocal is awfully close to

RPglobal. Nearly all the outputs of RPlocal are contained by

two times of RPglobal. The outcome of RPglobal is partial as

minimum support becomes near to the ground, the number of

closed patterns grows awfully speedy, and the running times

of RPglobal go beyond the time limit (30 minutes). RPglobal

does not sizes in good health w.r.t. lot of patterns, also it

takes more time than RPlocal. Moreover RPglobal is very

slow and requires much more space. It is only usable when

number of frequent patterns are less. RPlocal is constructed

on beam of FPclose [4]. It integrates frequent pattern mining

with representative pattern finding. RPlocal is very efficient,

but it produces more representative patterns than RPglobal.

Yan et al. [5] apply profiles to summarize patterns. A profile

consists of a master pattern, a support and a probability

distribution vector, which contains the probability of the

items in the master pattern. The set of patterns represented by

a profile are subsets of the master pattern, and their support is

designed by multiplying the support of the profile and the

likelihood of the related items. To summarize a group of

Paper ID: SUB155424 1422

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

patterns with k profiles, they divided the patterns into k

clusters, and apply a profile to depict each cluster. But it

makes opposing assumptions. Poernomo et al[6] employed

conditional independence to reduce restoration error. It

appended an additional factor to every profile that is a pattern

base, and then newfangled profile is called c-profile that is

conditional profile. C-profile is actually itemset profile,

extended from a base denoting the form where the individual

summary is applicable. The cp-summary contain a record of

c- profiles, every one of which encodes numerous frequent

item sets in a natural way. The items in a c-profile should be

independent with respect to the pattern base. Though, a

pattern from a c-profile frequently contributes slightly

similarity, thus a c-profile is not remain representative of its

patterns to any further extent.

3. System Implementation

System of representative pattern set mining is made with

unitizing different modules. In first module frequent patterns

get extracted with considering levels of threshold and

support. Then in second module data structure called CFP-

tree is generated. This structure stores the frequent patterns

that are extracted from dataset. CFP-tree is a very compact

structure for storing these frequent patterns. By some rules

and conventions these patterns are placed in the tree. After

this MinRPset algorithmis applies on tree. MinRPset calls

Flex_Search_CXs algorithm which call Search_CX

algorithm which gives C(X) back to Flex_Search_CXs. This

same goes repeating for every root node of tree and finally

MinRPset get set of C(X). FlexRPset provides one extra

parameter K to allow users to make a tradeoff between result

size and efficiency. User may increment K until he becomes

satisfied. Latter on if there remains any non closed entries in

C(X)s that get removed. Finally by applying greedy set cover

algorithm, required patterns will get i.e. small number of

representative patterns that approximate all other patterns.

Figure 1: System Architecture

3.1 Mining Frequent patterns

From dataset there can have lots of patterns. Every pattern is

associated with support. Support of pattern is calculated by

considering the items in patterns and their individual

occurrence. User decides a threshold of support called

min_sup. Then support of every pattern will map with

threshold. Pattern having support greater than threshold are

considered as frequent pattern. These patterns are of interest

for further processing. Frequent patterns hold a property

called anti-monotone property. In accordance with this

property, if a pattern is a frequent pattern, then all of its

subsets are also frequent, that means, support of any pattern

is always same or greater than its superset.

Here concept of ϵ-cover is used. ϵ is a real number ϵ∈[0,1)

and two patterns X1and X2 are there, then it can say that

pattern X1 is ϵ -covered by X2 if X1⊆ X2 and D(X1,X2) ≤ ϵ.

Where D(X1,X2) is the distance between patterns X1 and X2.

Condition X1⊆ X2 ensures that the two patterns X1 and X2

have similar items, and condition D(X1,X2) ≤ ϵ ensures that

these two patterns have similar supporting transaction sets

and similar support. Then for two patterns X1 and X2, if

pattern X1 is ϵ -covered by pattern X2 and using supp(X2) to

approximate supp(X1), then the relative error is no larger

than ϵ. That means if a frequent pattern X1 is ϵ -covered by

pattern X2, then supp(X2) ≥ min_sup·(1- ϵ). And that relative

error is [1]

 (1)

Consider set of frequent patterns F in a dataset D with respect

to threshold min_sup, and be the set of patterns with

support no less than min_sup·(1- ϵ) in D, then obviously,

F⊆ . Then for a pattern X∈F, C(X) denotes the set of

frequent patterns that can be ϵ-covered by X. Thus, C(X) ⊆

F, and if X is frequent, X∈C(X).And this module gives , as

discribed above.

3.2 CFP-Tree Generation

The structure CFP-tree is particularly designed and built for

storing and querying frequent patterns. It is similar to a

setenumeration tree [7]. The assembly of CFP-tree is based

on a pattern-growth approach. The root node of tree holds all

frequent items that are sorted in way of ascending frequency.

Fig.2 shows the frequent patterns by considering support

greater than 3. From these patterns CFP-tree in fig.3 is

generated.

Figure 2: Frequent Patterns(min_sup=3)

Every item i in the root node may have a subtree, and this

subtree saves all frequent patterns that are determined from

i‟s conditional database. All node of a CFP-tree is an array of

variable-length. If a node has more than one entry, then each

entry holds one item precisely. And if a node contains just

one entry, then it is called as „singleton node‟. Singleton

nodes may hold multiple items. An entry E stores numerous

quantity of information: (1) number of items: m, (m ≥ 1), (2)

Paper ID: SUB155424 1423

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

support of E, (3) pointer that points to the child node of E

and (4) id of entry that is allotted by preordering. The

structure CFP-tree shares the storage of different patterns by

means of their prefixes and suffixes. Prefix sharing is simple

to understand. E.g. patterns {f, m} and{f, a} share the similar

prefix {f} in Fig.3. In CFP-tree node with multi-entry the

items that comes next to E can only come in subtree of E, and

these items are called „candidate extensions‟ of E. The total

entries in a CFP-tree are greatly lesser than that of total

amount of patterns stored in the tree. For an entry E, simply

its longest pattern is closed one. Other patterns of E those are

shorter than the longest pattern are not closed. If the longest

pattern of an entry is not closed, then that entry is a non-

closed entry.

Figure 3: CFP-Tree Structure

Each entry in a CFP-tree corresponds to one or more patterns

with the same support, and these patterns include the items

on the path from the root to the entry. Items included in

singleton nodes are elective. Let E be an entry, Xm be the set

of items in the multiple-entry nodes and XS be the set of

items in the singleton nodes on the path from the root to the

parent of E respectively. The set of patterns represented by E

is {Xm∪ Y ∪ Z | Y ⊆Xs, Z ⊆E.items, Z is not ϕ}. The

longest pattern represented by E is Xm∪Xs∪E.items. Node 4

in the given above fig.3 contains only one entry. For this

entry Xm = {p}, Xs= {f} and E.items={m, a}. Therefore node

No.4 represents six patterns :{p, m}, {p, a}, {p, m, a}, {p, f,

m}, {p, f, a} and {p, f, m, a}. E.pattern is used to denote the

longest pattern represented by E.

The structure CFP-tree holds two important properties.[8]

1) The a priori property: The support of entry E cannot be

greater than that of its ancestors. This property can be used

when processing queries with minimum support

constraints. If the support of an entry does not satisfy the

minimum support constraint specified in a query, then

there is no need to access the subtree pointed by the entry.

2) The left containment property: In a CFP-tree node, the

item of entry E can appear in the sub trees pointed by the

entries before E, but cannot appear in the subtrees pointed

by the entries after E. For example, in the root node of the

CFP-tree shown in Fig. 3, item f can appear in the subtree

pointed by item c, d or p, but it cannot appear in the

subtree pointed by item m or a. The left containment

property can be utilized when processing superset queries.

3.3 MinRPset Algorithm

Finding a minimum representative pattern set is equal to

finding a minimum number of sets in S that can cover all the

frequent patterns in F. This is a set cover problem, and it is

NP-hard. There have the well-known greedy algorithm [5] to

solve the problem, which achieves an approximation ratio of

where k is the maximalsize of the sets in S. And that is

algorithm MinRPset. This algorithm takes root ofCFP-Tree.

It gives output with working two more algorithms

1)Flex_Search_CXs and2)Search_CX.

MinRPset Algorithm

1. Mine patterns with support ≧min_sup·(1- ϵ) and store them in

a CFP-tree;

Let root be the root node of the tree;

2. Flex_Search_CXs(root);

3. Remove non-closed entries from C(X)s;

4. Apply the greedy set cover algorithm on C(X)s to find

representative patterns and output them;

3.4 Flex_Search_CXs

The MinRPset algorithm sometimes can become awfully

time-consuming especially when the quantity of frequent

patterns is huge on a dataset, as it needs to look for subsets

over a big CFP-tree for a large quantity of patterns.

Moreover, the main memory does not become enough to fit

large amount of set of C(X)s in it. To solve this problem,

instead of searching C(X)s for every closed patterns, there

can selectively generate C(X)s such that each frequent

pattern is covered a sufficient number of times, in the hope

that the greedy set cover algorithm can still find a near

optimal solution. Naturally, the fewer the number of C(X)s

generated, the more efficient the algorithm is.This is the basic

idea of the FlexRPset algorithm..

To control the minimum number of times that a frequent

pattern needs to be covered the FlexRPset algorithm uses a

parameter K. Algorithm uses the depth first order to traverse

a CFP-tree from left to right. It traverses the subtree of an

entry E first (line 3-4) before it processes E (line 5-8), which

means that when E is processed, all the supersets of E have

been processed already, and E cannot be covered any more

except by itself. If E is frequent and it is covered less than K

times, then there can generate C(E.pattern) to cover E. If E

has already been covered at least K times when Eis visited,

then focus is at the ancestor entries of E. For an ancestor

entry E of E, most of its supersets are already processed too

when E is visited, hence not many remaining entries can

cover E. If E is frequent, E can be ϵ-covered by E and E is

covered less thanK times, then there can also generate

C(E.pattern) to cover E. User may start with value of K=1, as

value of K is small,lot of representative patterns get

generated, increasing value k=10 minimizes size of pattern

and so on. As k gets increases, running time becomes longer.

User decides to stops increasing value of k when he becomes

happy with pattern.

Flex_Search_CXs Algorithm

 Input:cnode is a CFP-tree node; //cnode is the root node

initially.

K is the minimum number of times that a frequent closed pattern

needs tobe covered;

 Output:C(X)s;

 Description:

Paper ID: SUB155424 1424

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

1. for each entry E ∈cnode from left to right do

2. if E is not marked as non-closed then

3. ifE.child≠ NULL then

4. Flex_Search_CXs(E.child);

5. if E is more frequent than its child entries then

6. if (E is frequent AND E is covered less than K)OR(∃ an

ancestor entry E′ of E such that E′is frequent E′ can be ϵ-

coveredby E and E′ is covered less than K times) then

7. X=E.pattern;

8. C(X) = Search_CX(root, X, E.support);

3.5 Search_CX

Algorithm Search_CX shows the pseudo-codes for retrieving

C(X). Primarily, root node of the CFP-tree is cnode.

Parameter Y contains the set of items to be searched in

cnode. It is set to X initially. Once an entry E is visited, the

item of E is removed from Y when Y is passed to the subtree

of E (line 8, 18). The item of E is also excluded when Y is

passed to the entries after E (line 21). This is because the

Search_CX Algorithm

 Input: cnode is a CFP-tree node; //cnode is the root node

initially.

Y is the set of items to be searched in cnode; //Y=X

initially. supp(X) isthe support of X;

 Output:C(X);

 Description:

1. ifcnode contains only one entry E then

2. ifE.support==supp(X) AND E.pattern⊂ X ANDE is on

the right of X then

3. Mark E as non-closed;

4. if E is not marked as non-closed AND E is frequent then

5. ifE.items⋂ Y≠ ∅ AND E.support ≤ then

6. PutE.preorder into C(X);

7. ifE.child≠ NULL AND Y-E.items≠ ∅then

8. Search_CX(E.child, Y-E.items,supp(X));

9. elseifcnode contains multiple entries then

10. foreach entry E∈cnode from left to right do

11. ifE.items∈Y AND E is frequent then

12. ifE.support == supp(X) AND E.pattern⊂ X AND E ison

the right of X then

13. Mark E as non-closed;

14. if E is not marked as non-closed then

15. ifE.support ≤ AND E is more frequent thanits

child entries then

16. PutE.preorder into C(X);

17. ifE.child≠ NULL AND Y-E.items≠ ∅then

18. Search_CX(E.child, Y-E.items, supp(X));

19. ifsupp(E.pattern⋃Y) > then

20. return;

21. Y=Y-E.items;

item of E cannot appear in the subtrees pointed by entries

after E. During the search of C(X)s, there can also mark non-

closed patterns. From the patterns of E, if longest among

them is a proper subset of X, E.support=supp(X)and E occurs

on the right of X, then E is marked as non-closed (line2-3,

12-13), and it is skipped in subsequent search. For example,

when user search for the subsets of pattern {p, f, m, a} using

Algorithm Search_CX in Fig. 3, he finds that one subset {f,

m} has the same support as {p, f, m, a} and {f, m} occurs on

the right of {p, f, m, a}. Hence the entry of {f, m}, which is

the first entry in node 5, is marked as non-closed. All the

patterns in the subtree pointed by this entry cannot be closed

either because for every pattern Z in the subtree, Z′ = Z ∪{p,

a} is a proper superset of Z and it has the same support as Z.

Entry {f, m} and its subtree are skipped in subsequent

traversal.

3.6 Removal of Non-closed Entries

After having set of C(X), further task is to remove any non-

closed entries. For desire work only closed patterns are in

interest. A pattern is closed if it is more frequent than all of

its supersets. So, by considering only closed one, non-closed

entries get remove. And then greedy set cover algorithm is

applied, that gives the less number of patterns.

4. Dataset and Results

Dataset foodmart can be obtain from

(http://pentaho.dlpage.phiintegration.com/mondrian/mysqlfo

odmartdatabase). Other dataset can also obtain from the

FIMI repository (http://fimi.ua.ac.be/data/). Compression

ratio is found 9 to 13 :1

Figure 4: CFP-Tree constructed

Figure 5: Representative Pattern Set

Paper ID: SUB155424 1425

http://fimi.ua.ac.be/data/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

We tried different min_sup for this system, at value of

min_sup for 10, 20, 30 and 35 we got 26, 10, 9 and 6 MinRP

respectively by keeping value of k=20.

5. Conclusions

For finding minimum representative pattern sets, here have

described algorithms MinRPset, Flex_Search_CXs and

Search_CX. First frequent patterns are mined, and then used

CFP-tree .By applying these algorithms on the CFP-tree,

representative patterns generated. This also will provide

some more benefits rather than minimum representative

pattern sets. Users may not know what value should be used

for ϵ at the beginning. The post processing strategy allows

users to try different ϵ values. This is especially beneficial on

very large datasets. It is easy to keep record of the set of

patterns covered by each representative pattern. This

information is useful for users to inspect individual

representative patterns in more details.

6. Acknowledgement

I express great many thanks to Prof. D.M. Padulkar for his

great effort of supervising and leading me, to accomplish this

fine work. Without his Coordination, guidance and

reviewing, this task could not be completed alone.

References

[1] G. Liu, H. Zhang, and L. Wong, “A Flexible Approach to

Finding Representative Pattern Sets,” IEEE transactions

on knowledge and data engineering, vol. 26, no. 7, july

2014.

[2] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining

association rules between sets of items in large

databases,” in Proc. SIGMOD, Washington, DC, USA,

1993, pp. 207216.

[3] D. Xin, J. Han, X. Yan, and H. Cheng, “Mining

compressed frequent-pattern sets," in Proc. 31st Int. Conf.

VLDB, Trondheim, Norway, 2005, pp. 709720.

[4] G. Grahne and J. Zhu, “Efficiently using prefix-trees in

mining frequent itemsets," in Proc. FIMI, 2003.

[5] X. Yan, H. Cheng, J. Han, and D. Xin, “Summarizing

itemset patterns: A profile based approach,” in Proc.

KDD, Chicago, IL, USA, 2005, pp. 314323.

[6] A. K. Poernomo and V. Gopalkrishnan, “CP-summary: A

concise representation forbrowsing frequent itemsets,” in

Proc. KDD, New York, NY, USA, 2009, pp. 687696.

[7] R. Rymon, “Search through systematic set enumeration,"

in Proc. KR, 1992, pp.539550.

[8] G. Liu, H. Lu, and J. X. Yu, “CFP-tree: A compact disk-

based structure for storingand querying frequent

itemsets,” Inf. Syst., vol. 32, no. 2, pp. 295319, 2007.

Author Profile

Mr. Vivek Satpute received the Bachelors degree(B.

E.) computer Engineering from savitribai phule pune

university he is now pursuing M. E. degree.

Prof. Digambar Padulkar is working as Assistant

professor, Department Of Computer Engineering,

Vidya Pratishthan‟s College Of Engineering, Baramati,

Pune, Maharashtra.. His research areas include

Uncertain Data Mining, Applications of Data Mining

in Business and Intelligent predictions.

Paper ID: SUB155424 1426

