
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Implementation of Enhanced Cache Controller with

Multi-Sized Outputs

Sweety M Pinjani
1
, Prof. V. B. Baru

2

 1PG Student, E&TC Department, Sinhgad College of Engineering, Pune, Maharashtra, India

2Associate Professor, E&TC Department, Sinhgad College of Engineering, Pune, Maharashtra, India

Abstract: The major role of cache controller is reduction in the data transfer access time between the CPU and cache. The controller

which is capable of handling a system with many cores is designed. It is also capable of giving multi-sized output like 1, 2, 4, 8 and 16

bytes. The operation of this controller is defined by 6 different states like Fetch Data, Read Cache, Write Cache, Read Memory, Write

Memory and Give Data. The controller can be used for different ways of caches. The design is developed using Verilog HDL. A test

bench is also developed to test the functionality of the design.

Keywords: Cache, cache controller, system performance, hit, miss.

1. Introduction

The technology is evolving at a fast rate. As a result, there is

a requirement for faster microprocessors. One of the major

components inside the microprocessors is the memory which

is used to store the data. Unfortunately, the memories are

slow as compared to processors. Due to this fact, it is

difficult to utilize the microprocessor efficiently. The

memory which is closest to the processor is the cache. It is

also the fastest and the most expensive of all the memories.

So, it is a major concern to utilize this memory most

effectively.

Cache controller is used to control the read and write

operation to this cache memory. It is also used to control the

data transfer operations between cache and processor as well

as cache and the main memory. Also, the controller needs to

be fast enough to handle the massive data transfers between

the processor, the cache and the main memory.

Many ways have been proposed for this cache controller

design. One of the ways is to design a pipelined controller.

But, this solution results in the increased complexity of the

design. In the multi-core system, the cache memory is shared

between different cores. So, the controller needs to be

capable of handling multiple applications simultaneously.

Another way is to increase the cache memory size. However,

there is a tradeoff, where the cache access time increases with

the size. Applying multiple ways and block sizes to the cache

reduces the miss penalty, but it results in complex design.

Thus, a simple cache controller is needed. One such cache

controller is proposed. This controller can work with 2

different agents or processor cores. It also gives the user a

facility to give multi-sized output data as per user

requirements.

2. Proposed Methodology

A. Cache Memory

Fig 1 shows the basic architecture of the cache memory. The

cache memory shown has 4 different ways. This memory has

a 32 bit address, which is divided into various parts like tag,

set, block and byte. The byte offset is used such that the

cache can provide variable data like 1, 2, 4, 8 and 16 byte.

The block select address is used to select any word inside the

cache. The set select address is used to select the set in every

ways inside the cache.

Figure 1: Block Diagram for Cache Architecture [1]

Cache operations are explained below:

1) Write operation: Any one way will be enabled to write the

data inside the cache. Any empty way or any way with the

same input tag register will be selected for cache write.

The set of each ways will be selected according to the set

select address.

2) Read operation: All cache ways will be enabled for the

read operation. The set select address will decide which set

will be used. The tag address provided by the processor

will be compared with the tag register inside the cache. If

the tag address matches and the valid bit are set, the data is

present inside the cache. This scenario is termed as cache

hit.

Paper ID: SUB155421 2174

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

B. Cache Controller

Cache controller is used to control the operations of the

cache. These operations can be explained with the help of

state machine diagram as shown in Fig 2. Table 1 shows the

various states involved in the controller operation.

Figure 2: State diagram for the Cache Controller [1].

The various states involved are explained below:

1) Fetch Data: This state will check whether the processor

request is a read or a write operation. Within this stage, the

controller will keep the busy flag until it goes to the other

stage.

2) Read Cache & Give Data: In this stage the cache will be

checked. If it is a hit, the data in the cache will be sent to

the CPU. If it is a miss, the controller will go to the next

state which is the Read Memory State.

3) Read Memory: The data which is not found inside the

cache is read from the main memory in this state.

4) Write Cache: this state will use the previously stored data

in the temporary register and write it to the cache. If there

is a cache miss, it will return to Read Cache & Give Data

State. Else, it will go to Fetch Data State waiting for the

next instruction.

5) Write Memory: Whenever there is a write request from the

processor, the data is writing into main memory using this

state.

Table 1: Controller States.
State used in design (state) Cache State

000 Fetch Data

001 Read Cache

010 Write Memory

011 Read Memory

100 Write Cache

101 Give Data

In the design, user has the ability to select the output data of

multiple sizes like 1, 2, 4, 8 or 16 byte. The size for the

output is selected depending on the size select input as shown

in the Table 2.

Table 2: Multiple sized outputs in the design [1]
Size Select Input (szsel) Selected Output Size

000 1 byte

001 2 byte

010 4 byte

011 8 byte

100 16 byte

The design gives the capability to allow read of data by

multiple core simultaneously. The various signals involved in

multi-core operation are shown in Table 3.

Table 3: Signals in multi core operation.
Signal used for multi core Meaning of signal

read_core1 Read request from core1

read_core2 Read request from core2

cache_out Output data from cache

core1_out Output data from core1

core2_out Output data from core2

3. Results

The simulation results of the controller designed are divided

into 3 parts. The first part shows the state changes within the

cache controller when the data is input using a write request.

The second part shows the multiple sized outputs obtained

from the controller as per the user request. The third part

shows that the cache can be accessed by multiple cores

simultaneously. The simulation results showing cache state

changes are shown in Fig 3. Whenever the data is input it is

first written into the main memory. The data from main

memory is then read and stored into the cache. This data can

then be read from cache and given to the user.

Figure 3: Simulation results showing state changes

The results for multiple sized output data are depicted in Fig

4 below. As shown in Fig 4, when the user gives szsel=1, the

output data size is 2 bytes. Similarly, for szsel=2, the output

data is of 4 byte. For szsel=3 and szsel=4, the output size of 8

byte and 16 byte are obtained respectively.

Figure 4: Simulation results showing multi sized outputs

Paper ID: SUB155421 2175

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The design is capable of handling multiple cores

simultaneously. This is shown in Fig 5. When both core1 and

core2 request for accessing the data from cache by asserting

their read signals to 1, the output data is available at the

outputs core1_out and core2_out of the core1 and core2

respectively.

Figure 5: Simulation results showing multiple core access.

4. Conclusion

The controller designed is capable of handling a system with

many cores. Thus, it supports multi-core architectures. It also

gives multi-sized output like 1,2,4,8 or 16 bytes. It can also

be used for caches with different ways. This controller

reduces the number of instruction cycles required for

providing the data requested by the processor to 1 instruction

cycle. This is due to the fact that the data from the cache can

be accessed in one processor instruction cycle. The design

can be used for various different types of cache with various

different sizes of data like 1, 2, 4, 8 and 16 byte.

References

[1] Siti Lailatul Mohd Hassan, “Multi-Sized Output Cache

Controller”, 2013 International Conference on

Technology, Informatics, Management, Engineering &

Environment (TIME-E 2013) Bandung, Indonesia, June

23-26,2013.

[2] David Money Harris, Sarah L. Harris, Digital Design

and Computer Architecture, Morgan Kaufmann, March

2007, pp. 476.

[3] Alokika Dash, Peter Petrov, "Energy-Efficient Cache

Coherence for Embedded Multi-Processor Systems

through Application-Driven Snoop Filtering", IEEE

Journal of Solid State Circuits, 2006.

[4] David E. Culler, Jaswinder Pal Singh, Anoop Gupta,

Parallel Computer Architecture: A Hardware/Software

Approach, Gulf Professional Publishing, 1999, pp. 381.

[5] Kunle Olukotun, "Multilevel Optimization of Pipelined

Caches", IEEE Joumal of Solid-State Circuits, October

1997.

[6] Apoorv Srivastava, "1900-MHz CMOS 4-Kbyte

Pipelined cache", in IEEE Joumal of Solid-State

Circuits, 1995, pp.1053.

[7] Roy W. Badeau, "A 100-MHz Macropipelined V AX

Microprocessor", in IEEE Joumal of Solid-State

Circuits, Vol. 27, No. II, November, 1992.

[8] Daniel W. Dobberpuhl, "A 200-MHz 64-bit Dual Issue

CMOS Microprocessor", in IEEE Joumal of Solid-State

Circuits, Vol. 27, No. II, November, 1992.

[9] Vipin S. Bhure, Praveen R. Chakole, "Design of Cache

controller for Multi-core Processor System", in

Intemational Joumal of Electronics and Computer

Science Engineering, pp.520.

[10] Badri Ram, Advanced Microprocessors and Interfacing,

Tata McGraw-Hill Education, Sept 200 I, pp.289.

Author Profile

Ms. Sweety M. Pinjani has done BE in Electronics and

Telecommunications from Sant Gadge Baba Amravati

University, Amravati. She is currently pursuing ME in

VLSI & Embedded Systems (E&TC) from Sinhgad

College of Engineering, Pune. Her areas of interest are

ASIC, SOC and IP Verification.

Prof. V. B. Baru is an Associate Professor in

Electronics and Telecommunication Department at

Sinhgad College of Engineering, Pune. He has done

BE in 1993 from College of Engineering, Pune and

completed ME in 1999 in Electronics and

Telecommunications. He is pursuing Ph. D from College of

Engineering, Pune. He has 20 years of Teaching Experience and

published more than 50 papers in national and International level

journals. He is author of two books „Electronic Product Design‟ by

Wiley Publication and „Basic Electronics‟ by Dreamtech

Publication. He has guided more than 100 UG students and about

25 PG students for their Dissertations.

Paper ID: SUB155421 2176

