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Abstract: In 2004, G.Ganesan et.al introduced the concept of indexing any information system with fuzzy decision attributes using a 

threshold. These indices are based on the two way approach of Pawlak’s rough sets. However, the approach of Pawlak lacks in 

quantifying the importance of any basic granule which involve in the approximation. Later, Y.Y.Yao discussed a new Probabilistic 

Rough Set model which appropriately quantifies the appropriate basic granules. In this paper, we extended the work of G.Ganesanet.al., 

for the Probabilistic Rough Set Model to improve the efficiency of rough indices in the information system with fuzzy decision attributes. 
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1. Introduction 
 

Z.Pawlak’s concept of Rough Sets [4,5] finds various 

technical applications in the areas such as Knowledge 

Discovery, Acquisition etc. This incompletes any 

input/concept in terms of union of Basic Categories in two 

ways.However, this approach lacks with the level of 

involvement of the basic categories defined. To succeed, 

W.Ziarko defined Variable Precision Rough Sets in 1993, 

which mainly deals with the approximations based on the 

degrees of contributions of the Basic Categories in defining 

the approximations for a given input. Afterwards, Bing 

Zhou, YY Yao, Slezaketc have contributed in extending this 

model through Probabilistic approaches.  

 

The researchers such as Dubois, Prade, Nakamura, 

Biswasetc at the same time have been prominent noteworthy 

in hybridizing rough and fuzzy models for real time 

applications. In 2005, G.Ganesan et.al, discussed the 

importance of defining the thresholds in rough fuzzy 

computing in 2008. The indexing terminology in 

information systems using these thresholds has been 

introduced by G.Ganesanwith fuzzy decision attributes. 

Recently, Yiyu Yao and Bing Zhou discussed the Naïve 

Bayesian Rough Set 

 

Model in [8] and earlier to this, the initial approach in this 

regard was discussed in [7] by Slezak. In this paper, we 

extended the work of G.Ganesanet. al., on rough indexing to 

the information systems functions with Probabilistic Naïve 

Bayesian Rough Set Model. 

 

2. Decision Theoretic And Probabilistic Rough 

Sets 
 

The Rough Sets [4,5] theory gives two way approximations 

namely lower and upper approximations for a given input. 

For given finite universe of discourse U and an equivalence 

relation E, we define the equivalence class of any xU to be

   /x y U xEy  . The family of equivalence classes 

  |
E

U x x U
E
   is a partition of the universe U. For 

a given concept C, Pawlak defined the lower approximation 

as     /
EE

apr C x U x C    and upper approximation 

as     /
E E

apr C x U x C    . According to Pawlak, 

for a given concept C, three disjoint regions can be defined 

namely positive, negative and boundary regions which are 

defined as follows: 

Positive Region:     /E E
POS C x U x C  

 
BoundaryRegion:       /E E E

BND C x U x C x C      

Negative region    :     /E E
NEG C x U x C     

 

parameterized rough set model, probabilistic rough set 

model and generalized rough set model were generalized by 

many researchers on this approachUnderstanding the 

limitations of Pawlak’s restrictivemodel 
 

By considering degrees of overlap between equivalence 

classes and a concept C to be approximated and is viewed as 

the conditional probability of an object belongs to C given 

that the object is in [x] defined rough membership 

functionIn 1994, by Pawlak and Skowron [6] (for simplicity, 

we denote [x]E with [x]) which is given as 

 
 

 
Pr

C x
C

x x

 
 

 

 

Using the definition quoted above, in [7], the positive, 

boundary and negative regions are defined as follows: 

 
( ) / Pr 1CPOS C x U

x

  
    

  
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 
( ) / 0 Pr 1CBND C x U

x

  
     

  
 

 
( ) / Pr 0CNEG C x U

x

  
    

  

 

In 2009, Greco et.al [3] discussed the parameterized 

roughest model by generalizing the above said definitions. 

In this model, two thresholds namely  and  are used to 

define the probabilistic regions and the positive, boundary 

and negative regions are modified as follows: 

   ,
( ) / Pr CPOS C x U

x 


  
    

  

 

   ,
( ) / Pr CBND C x U

x 
 

  
     

  

 

   ,
( ) / Pr CNEG C x U

x 


  
    

  
 

These Probabilistic regions will lead three way decisions 

namely acceptance, deferment and rejection respectively for 

any object x in U. But, however, in several cases, it is easy 

to compute the probability of the existence of a category [x] 

for a given concept C using    
Pr

x Cx
C C

 
 

   

Hence as in [ ], by Baye’s Theorem, the Positive, Boundary 

and Negative Regions are given by 

 

  
   








 '
/Pr

/Pr
log/)(','  c

B

Cx

Cx
UxCPOS  

 

  
   








 '
/Pr

/Pr
log'/)(','  c

B

Cx

Cx
UxCBND  

 

  
   








 '
/Pr

/Pr
log/)(','  c

B

Cx

Cx
UxCNEG  

Pr( )
' log log

Pr( ) 1

cC
where

C





 


 

Pr( )
' log log

Pr( ) 1

cC
and

C





 


 

 

Now, we shall discuss the conventional approach on dealing 

the fuzzy sets to approximate under rough computing, which 

was discussed in [1] 

 

3. Analysis of Fuzzy Set Using a Threshold 
 

Consider a set D, called R-domain [1], satisfying the 

following properties: 

a) D  (0,1) 

b) If a fuzzy concept C is under computation, eliminate the 

values C(x) and C
c
(x)  xU  from the domain D, if 

they exist. 

c) After the computation using C, the values removed in (b) 

may be included in D provided A must not involve in 

further computation 

 

Consider the universe of discourse U={x1,x2,…,xn}. Let 

,1,2, be the thresholds assume one of the values from 

the domain D, where D is constructed using the fuzzy 

concepts A and B. For a given threshold  and a fuzzy set A, 

the Strong -Cut is given by [ ] { / ( ) }AA x U x     . 

The union and intersection of fuzzy sets [10] are by the 

maximum and minimum of corresponding membership 

values respectively.  

 

In 1972, Zadeh[9] introduced the concept of hedges. In 

fuzzy logic, in order to improve the efficiency of fuzziness, 

the concept of concentration and dilation were introduced by 

him.  

 

For example, for the linguistic variable ‘low’ with the 

membership function ,the hedges ‘very’ and ’very very’ 

emphasis the efficiency of the variable with the 

corresponding membership values 
2
 and 

4
. They are 

called concentration, whereas the hedges ‘slightly’ and 

‘more slightly’ dilutes the efficiency of the linguistic 

variables with the membership values with the 

corresponding membership values 
1/2

 and 
1/4

. They are 

called dilation. 

 

Using the definitions of fuzzy sets mentioned above, the 

following properties were derived in [1]. 

a) A[1]A[2]=A[] where =min(1,2) 

b) A[1]A[2]=A[] where =max(1,2) 

c) (AB)[]=A[]B[] 

d) (AB)[]=A[]B[] 

e) A
c
[]=A[1-]

c
 

f) (AB)
c
[]=A

c
[]B

c
[] 

g) (AB)
c
[]=A

c
[]B

c
[] 

 

Using the mathematical tool derived as above, in [1], rough 

set approach on fuzzy sets using a threshold is introduced as 

discussed below. 

 

3.1 Rough Approximations on fuzzy sets using  

 

Let  be any partition of U, say {B1,B2,…,Bt}. For the given 

fuzzy concept, the lower and upper approximations with 

respect to  can be defined as C= ( [ ])C   and 

C=

( [ ])C   respectively. 

 

3.1.1 Propositions 

Here, by using the properties of rough sets, the following 

propositions [] can be obtained. 

a) 
(AB) =


A


B

 

b) (AB) =AB 

c) (AB) AB 

d) 
(AB) 


A


B 

e) 
(A

c
) =(1-A)

c
 

f) (A
c
) =(

 1-
A)

c
 

 

 Now, we shall hybridize the concepts dealt in the above two 

sections which gives the approach of dealing a fuzzy 

concepts under Naïve Bayesian Probabilistic Rough Sets.  

 

4. Naïve Bayesian Probabilistic Rough Sets 

Model for A Fuzzy Concept 
 

Since, in the above both sections, the same threshold  has 

been used, for different purposes, to make the homogeneity, 
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in this paper, we replace the threshold  to obtain a Strong 

Cut on fuzzy sets with.  

 

Hence, for a given fuzzy concept F with the threshold , the 

probabilistic positive, boundary and negative regions are 

respectively defined on the approximation space U/E as 

 
[ ]( ) / Pr 1FPOS F x U

x

  
    

  

 

 
[ ]( ) / 0 Pr 1FBND F x U

x

  
     

  
 

 
[ ]( ) / Pr 0FNEG F x U

x

  
    

  

 

For given parameters and , the regions of the 

parameterized rough sets model are given by  

   , ,

[ ]( ) / Pr FPOS F x U
x  

 
  

    
  

 

   , ,

[ ]( ) / Pr FBND F x U
x  

 
  

     
  

 

   , ,

[ ]( ) / Pr FNEG F x U
x  

 
  

    
    

and the Regions of Naïve Bayesian Rough Sets Model are 

given by  

 

  
  ', ',

Pr / [ ]
( ) / log '

Pr / ( [ ])

B

C

x F
POS F x U

x F
  






  
   
  

 

 

  
  ', ',

Pr / [ ]
( ) / ' log '

Pr / ( [ ])

B

C

x F
BND F x U

x F
  


 



  
    
  

 

  
  ', ',

Pr / [ ]
( ) / log '

Pr / ( [ ])

B

C

x F
NEG F x U

x F
  






  
   
  

Pr( )
' log log

Pr( ) 1

cC
where

C





 


 

 

Pr( )
' log log

Pr( ) 1

cC
and

C





 

  

 

5. Rough Indices 
 

Let U be the universe of discourse and  be any value in 

(0,1). Let X={W1,W2,…,Wn} be any partition defined on U.  

For any fuzzy set A define A[]={xU/ A(x)>} where  

is chosen from R-domain satisfying the property that dil
n
() 

and con
n
() are the members of R-Domain for any positive 

integer n [dil represents dilation and con represents 

concentration]. The lower and upper approximations A and 

A

 are given by A=(A[])~ and A


=(A[])

~
 respectively 

[1]. 

 

The following algorithm as in [2] illustrates the method of 

indexing the elements of U, by using the lower and upper 

approximations of the given fuzzy set A   

 

Let M denote the largest number under consideration such 

that n+M is always positive and n-M is always negative for 

any integer n. 

 

5.1 Algorithms 

 

Algorithm rough index (x,A,)  

//Algorithm to obtain rough index of x an element of 

universe of discourse 

//Algorithm returns the rough index 

1. Let x_index be an integer initialized to 0 

2. Pick the equivalence class K containing x. 

If A(y)=0 for all yK 

begin 

x_index=-M 

goto 6 

  end 

 end 

3. If A(x)=1 

begin 

 If A(y)=1 for all yK 

begin 

x_index=M 

goto 6 

  end 

 end 

4. compute A and A

 

5. If xA 

begin 

x_index=M 

while (xA) 

begin 

 =dil() //dilation of  

 x_index=x_index+1 

 compute A 

end 

end 

else 

if xA
 

begin 

x_index=-M 

while (xA

) 

begin 

=con()    //concentration of  

x_index=x_index-1 

 compute A
 

end 

end 

else 

 Let = 

 compute A
 

 
while (xA and xA


) 

 begin 

 =con()    // concentration of  

 =dil() // dilation of  

 compute A,A

 

 x_index=x_index+1 

 end 

 if xA then  

x_index= - x_index 

end 

6. return x_index 
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Consider the universe of discourse U={a,b,c,d,e,f,g,h} with 

the partition X={{a,e,f},{b,g},{c,h}, {d}}. Let =0.5.  

 

Consider the fuzzy set {(a,0.6),(b,0.4), (c,0.8), (d,0.24), 

(e,0.44), (f,0.56), (g,0.98), (h,0.77)}. By the above 

algorithm, `b’ can be indexed by –1 and d can be indexed   

by –2-M. Similarly, other values of U can be indexed. These 

indices are called rough indices. 

 

Sometimes, the elements of different equivalence classes 

may have same rough index but in the above it is to be noted 

that the elements of same equivalence classes have the same 

rough indices. Clearly, it depends upon the choice of  and 

the fuzzy set taken under consideration. But,, it is obvious 

that the elements of the same equivalence classes will have 

the same rough indices and therefore, instead of indexing the 

elements of U, one may follow the given algorithm for 

rough indexing the equivalence classes. Now, this  algorithm 

shall be  modify for three way approach on rough sets as 

follows: 

 

Algorithm Three_Way_ rough index (x,A,)  

//Algorithm returns the Three_Way_rough index of x 

1. Let x_index be an integer initialized to 0 

2. Pick the equivalence class K containing x. 

If A(y)=0 for all yK 

begin 

x_index=-M 

goto 6 

  end 

 end 

3. If A(x)=1 

begin 

 If A(y)=1 for all yK 

begin 

x_index=M 

goto 6 

  end 

 end 

4. compute POS(A), BND(A) and NEG(A) 

5. If xPOS(A) 

begin 

x_index=M 

while (xPOS(A)) 

begin 

 =dil() //dilation of  

 x_index=x_index+1 

 computePOS(A) 

end 

end 

else 

if xNEG(A)
 

begin 

x_index=-M 

while (xNEG(A)) 

begin 

=con()    //concentration of  

x_index=x_index-1 

 computeNEG(A)
 

end 

end 

else 

 Let = 

 computeNEG(A)
 

 
while (x(POS(A)NEG(A))) 

 begin 

 =con()    // concentration of  

 =dil() // dilation of  

 computePOS(A)NEG(A) 

 x_index=x_index+1 

 end 

 if xPOS(A) then  

x_index= - x_index 

end 

6. return x_index 

 

This algorithm can be illustrated in the same manner as 

mentioned in the previous example. Now, we parameterize 

the algorithm using parameters and . 

 

Algorithm Naïve Bayesian_ rough index (x,A,,,)  

//Algorithm returns Naïve Bayesian_rough index of x 

1. Let x_index be an integer initialized to 0 

2. Pick the equivalence class K containing x. 

If A(y)=0 for all yK 

begin 

x_index=-M 

goto 6 

  end 

 end 

3. If A(x)=1 

begin 

 If A(y)=1 for all yK 

begin 

x_index=M 

goto 6 

  end 

 end 

4. compute POS
B

(’,’,)(A), BND
B

(’,’,)(A) and 

NEG
B

(’,’,)(A) 

5. If xPOS
B

(’,’,)(A) 

begin 

x_index=M 

while (xPOS
B

(’,’,)(A)) 

begin 

 =dil() //dilation of  

 x_index=x_index+1 

 computePOS
B

(’,’,)(A) 

end 

end 

else 

if xNEG
B

(’,’,)(A)
 

begin 

x_index=-M 

while (xNEG
B

(’,’,)(A)) 

begin 

=con()    //concentration of  

x_index=x_index-1 

 computeNEG
B

(’,’,)(A)
 

end 

end 

else 

 Let = 
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 computeNEG(A)
 

 
while 

(x(POSB
(’,’,)(A)NEGB

(’,’,)(A))) 

 begin 

 =con()    // concentration of  

 =dil() // dilation of  

compute 

POS
B

(’,’,)(A)NEG
B

(’,’,)(A) 

 x_index=x_index+1 

 end 

 if xPOS
B

(’,’,)(A) then  

x_index= - x_index 

end 

6. return x_index 

 

6. Naïve Bayesian Indexing In Information 

System With Fuzzy Decision Attribute 
 

According to the perspective of Z.Pawlak, any information 

system is given by T=(U, A, C, D), where U is the universe 

of discourse, A is a set of primitive attributes, C and D are 

the subsets of A called condition and decision features 

respectively [C and D may not exist in a few of the 

information systems]. 

 

Consider an information system with conditional attributes 

C={a1,a2,…,an} and ecsion attributes {d1,d2,…,ds} with the 

records U={x1,x2,…,xm}. For any index key ‘a’ in C, the 

indiscernibility relation is given by 
ki a jx x  (read as xi is 

related to xjwith respect to ak) if and only if ak(xi)=ak(xj).  

Clearly, this indiscernibility relation partitions the universe 

of discourse U. However, the procedure of selecting the 

appropriate minimal attributes [reducts] for effectiveness is 

not discussed in this paper. 

 

 

For example, consider the decision table with C={a,b,c,d} 

and D={E}. 

 

 a b c d E 

x1 1 0 2 1 1 

 x2 1 0 2 0 1 

 x3 1 2 0 0 2 

 x4 1 2 2 1 0 

 x5 2 1 0 0 2 

 x6 2 1 1 0 2 

 x7 2 1 2 1 1 

  

Let us consider the index key as ‘c’. As x1,x2,x4,x7 have the 

values 2; x3,x5 have the values 0 and x6 has the value 1. 

Hence, the partition on U with respect to c can be defined as 

{{x1,x2,x4,x7},{x3,x5},{x6}}. 

 

However, in real time systems we can find several 

information systems with fuzzy decision attributes and 

hence the scope of the algorithms discussed above would be 

applicable for such information systems. Here, the Naïve 

Bayesian rough indexing of the data can be derived from the 

fuzzy decision attribute as discussed in the previous section. 

 

For example, consider knowledge representation of the 

information system with C={a,b,c,d} and D={E} where E is 

of fuzzy natured. 

 

 a b c d E(xi) 

x1 1 0 2 1 0.45 

 x2 1 0 2 0 0.7 

 x3 1 2 0 0 0.65 

 x4 1 2 2 1 0.1 

 x5 2 1 0 0 0.91 

 x6 2 1 1 0 0.6 

 x7 2 1 2 1 0.35 

  

On considering ‘c’ as the index key, the partition obtained 

is{{x1,x2,x4,x7},{x3,x5},{x6}}. Let =0.5. Here, 

E[]={x2,x3,x5,x6}. For a given and , the Naïve Bayesian 

indexing algorithm would be implemented further. 

 

7. Conclusion 
 

In this paper, by using the concept of Naïve Bayesian rough 

sets the approach of indexing the records of the information 

system is dealt. These rough indices are useful to analyze 

and index a database when the fuzzy information about the 

entire key values is obtained.  
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