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Abstract: In mathematics a green’s function is type of function used to solve inhomogeneous differential equations subject to specific 

initial conditions or boundary conditions. Green’s functions provide an important tool when we study the boundary value problem. 

They also have intrinsic value for a mathematician. Also green’s functions in general are distribution, not necessarily proper function. 

Green functions are also useful for solving wave equation, diffusion equation and in quantum mechanics, where the green’s function 

of the Hamiltonian is a key concept, with important links to the concept of density of states. 
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1. Introduction 
 

The green‟s function as used in physics is usually defined 

with the opposite sign that is [1], [2]. 

)(),( sxsxG    

This definition does not change significantly any of the 

properties of the Green‟s function in heat conduction we 

know that the Greens‟ function represents that temperature at 

a field point due to a unit heat source applied at source point. 

In electro static the green‟s function stand for the 

displacement in the solid due to the application of unit point 

force [3]. 

 

In this project construction of green‟s function in one and 

two dimension has shown. There are more than one way of 

constructing greens‟ function (if it exists) but the result is 

always same. Due to this we can say that green‟s function for 

a given linear system is unique. We start with the brief 

introduction of the Dirac delta or Dirac‟s delta function 

which is not strictly a function in real sense of functions [4]. 

 

2. Dirac Delta Function 
 

i. δ(t-a) = 0 if t ≠ 0 

ii. δ(t-a)dt = 1 

iii. δ(t-a)f(t)dt = f(x) 

iv. δ(t-a)= δ(a-t) 

 

3. Green’s Function Associated with One 

Dimensional Boundary Value Problem 
 

Consider the following boundary value problem.  

M[y] = F(x)→(1) x1
< x < x2
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Divide by  xA2  we will get 
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Multiply equation (2) by P(x) 
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Consider the self-ad-joint boundary value problem 
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Now split the boundary value problem into the following 

boundary value problems. 
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The solution of problem (3) is written as  

PH yyy   
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Hy  is complementary function which satisfy the 

homogeneous differential equation 

0Hy  

Py  is the particular solution to the inhomogeneous 

differential Equation 

 xfyP   

The general solution of (4) is written as  

 62211  ycycyH  

 

Here 1y & 2y  are solution of homogeneous Equation 

  21,0 ccandy   are arbitrary constant and they can 

be determined by applying the boundary condition. Now 

consider the problem (5). Suppose that the solution of 

problem „5‟ can be expressed in the integral form as 

     7,
2

1

  dssfsxgy

x

x

P  

Where g(x, s) is the green‟s function which is to be defined 

later. The negative sign in (7) describe the physical 

interpretation. Apply the differential operator   on both 

sides of „7‟ 
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Since   & the integral operator commute each other. 
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And also we have 
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From i, ii, and iii. 
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Since  sf  is arbitrary   0sf  

 

    0 sxg   

    sxg  (8) 

 sx   Is dirac delta function. 

 

To, determine the unique green‟s function condition (8) is not 

enough. We have to determine other condition also from 

homogeneous boundary condition. 
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  01 PyB  ,   02 PyB  
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Since  sf Can be almost any function the above relations 

are satisfied only if. 

  01 gB  ,    02 gB (9) 

Hence the green‟s function we are looking for is solution of 

the following boundary problem 

    sxg  (10) 

Related with boundary condition 

  01 gB  ,   02 gB  

Where„s‟ is a fix value lies between x1 and x2. And. The above 

problem is similar to that given equation in (5) only the 

forcing function in (9 ) is delta function rather than 

arbitrary function f(x). This means that solving the problem 

for g is simpler then solving the corresponding problem „y‟. 

 

And once the green‟s function has been determined for 

particular operator £ and set of boundary conditions it may 

be used for solving problem (5) for any number of time 

where only the function f(x) changes from problem to 

problem. It is this feature of green‟s function that makes it 

most useful in application [5]. The green‟s function g(x,s) 

associated with boundary value problem 
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Satisfying……………… 

(a)    sxg    1x < x  < 2x  

(b)   01 gB  ,   02 gB  

(c)    ssgssg ,,    

(d) 
   

 sPx
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The condition„d‟ is called jumped discontinuity of green‟s 

function at x=5. 

 

Based on above condition an exploit formula for the green‟s 

function can be designed. It is observed from the condition 

(a) if either x<s or x ≥ s then 
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  0g  By definition of Dirac Delta function if 

…………… are solution of homogeneous differential 

equation   0g  Such that   011 ZB    022 ZB  so, 

from condition (a) and (b) the green‟s function has following 

form 
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be determined imposing the condition c and d. the unknown 

function u & v must be chosen such that  
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By solving the above two simultaneous equation we will get 
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Since Z1 and Z2 are such solution we can write 

           csxZZWsPsZZWsP  2,12,1  

The green‟s function can be written as  
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Green‟s function is symmetric in x and s.  

i.e. g(x,s) = g(s,x) 

 

1) Green’s function associated with two dimensional 

problems: 

To, introduce green‟s function in two dimensions, we 

consider the PDE (Poisson‟s equation which here represents 

static deflection of a rectangular membrane). 
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Here f(x,y) represent the external load per unit area, divided 

by T(tension in the membrane, which here has the dimension 

of force per length) 

The B.CS. in this case are     0,,0  yauyu  , 

    )12(0,0,  bxuxu  

A concentrated force acting at a point (x
/
,y

/
) may be 

simulated by the two dimension delta function 
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Let   0,  yyxxG  be the green‟s function associated 

with the problem  
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G(0,y) = G(a,y) = 0, G(x,0) = G(x,b) = 0→ (14) 

Then the solution of the problem (11) and (12) is given by  
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We first find a complete set of Eigen functions of the 

associated homogeneous Eigen value problem viz. 
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Which have been normalized to unity. Now the required 

green‟s function can be represented as 

 
b

yn

a

xm
yxA

ab
yyxxG

nm

mn


sinsin),(

2
; ''

1,1

'' 




  

 

Now the required green‟s function can be represented as  
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Substituting this into (13) 
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Multiplying by    b
y

a
x nm  '' sinsin and integrating 

w.r.t x and y we have. 
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Hence on substitution 
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4. Conclusion 
 

This paper provides the introduction of green‟s function 

associated with one and two dimensional problems to solve 

inhomogeneous differential equations subject to specific 

initial conditions or boundary conditions. We start with the 

brief introduction of the Dirac delta or Dirac‟s delta function 

and then explore Green‟s Function Associated with one 

dimensional boundary value problem. Finally green‟s 

function in two dimensions, we consider the PDE‟s e.g. 

Poisson‟s equation which here represents static deflection of 

a rectangular membrane. 
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