
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Smart Type-Ahead Search in XML

Supriya. N. Chaudhari
1
, Vaishali M. Deshmukh

2

1Sant Gadage Baba University, Prof. Ram Meghe Inst. of Tech. & Res, Badnera, Amravati, Maharashtra India

2Sant Gadage Baba University, HOD Information Technology, Prof. Ram Meghe Inst. of Tech. & Res,

Badnera, Amravati, Maharashtra India

Abstract: Now a day in this digital world, internet search keyword paradigm are much popularized. However the search engine that uses

html based model does not capture more semantics. But the xml model captures more semantics and navigates into document and

displays more relevant information. The keyword search is alternative method to search in xml data, which is user friendly, user no need

to know about the knowledge of xml data. This paper focuses on the survey of techniques used to retrieve the top k results from the xml

document more efficiently. In addition to this, focus is given how to improve search performance by using data view. Data view is

maintained after every successful search which will increase search performance as other searches will first begin with data view. Our

proposed method has the following features: 1) Search as you type: It extends Auto-complete by supporting queries with multiple

keywords in XML data.2) Fuzzy: It can find high-quality answers that have keywords matching query keywords approximately. 3)

Intelligent: Our effective index structures, searching algorithms and data view can achieve a very high interactive speed. Answering

queries using data views has shown significant performance benefits.

Keywords: XML, keyword search, type-ahead search, fuzzy search, data views.

1. Introduction

Now a day‟s an internet search engines are much

popularized, where keyword search paradigm has become

very crucial. However the search engine that uses html based

model does not capture more semantics. But the xml model

captures more semantics and navigates into document and

displays more relevant information. The keyword search is

alternative method to search in xml data, which is user

friendly, user no need to know about the knowledge of xml

data. This paper focuses on the survey of techniques used to

retrieve the top k results from the xml document more

efficiently and how to speed up the information retrieval

process.

 Over Word Wide Web millions of data is stored. From

where it is very difficult to find exactly what is intended.

Therefore keyword search becomes very important paradigm

to solve the purpose. A keyword search looks for words

anywhere in the record. It is emerged as most effective

paradigm for discovering information on web. The advantage

of keyword search is its simplicity-users do not have to learn

complex query language and can issue query without any

knowledge about structure of xml document. The most

important requirement for the keyword search is to rank the

results of query so that the most relevant results appear.

Keyword search provides simple and user friendly query

interface to access xml data in web. Keyword search over

xml is not always the entire document but deeply nested xml.

Xml was designed to transport and store data. It does not do

anything, it is created to structure, store, and transport

information.xml document contains text with some tags

which is organized in hierarchy with open and close tag.xml

model addresses the limitation of html search engine i.e.

Google which returns full text document but the xml

captures additional semantics such as in a full text titles,

references and subsections are explicitly captured using xml

tags. For querying xml data keyword search is proposed as

an alternative method. In traditional approach to query over

xml data it requires query languages which are very hard to

comprehend for non database users. It can only understand

by professionals. However the traditional approaches are not

user friendly. To solve this problem many systems

introduced various features. One method id Autocomplete

which predicts the words the user had typed in. More and

more websites support these features example Google,

yahoo. One limitation of this approach is it treats multiple

key words as single key word and do not allow them to

appear in different places. To address this problem, Bast and

Weber [19] proposed complete search in textual documents

which allows multiple keywords to appear in different places

but it does not allow minor mistakes in query.

Recently, Ji. Feng and G.Li, [1], [2] studied fuzzy type ahead

search [1],[2] which allows minor mistakes in query. Type

ahead search is a user interface interaction method to

progressively search for filter through text. As the user types

text, one or possible matches for text are found and

immediately present to user. The fuzzy type ahead search in

xml data returns the approximate results. The best similar

prefixes are matched and returned. For this edit distance is

used. Edit distance is defined as number of operations

(delete, insert, substitute) required to make the two words

equal. For example user typed the query ”mices” but the

mices is not in the xml document it contains miches

ed(mices, miches) is 1 so therefore the best similar prefix is

miches it is displayed.

But every time it is not possible to store the data as relational

data. For example in court case many more documents are

whose details can not be stored as a relational data. So if we

have these documents in the form of XML document, we can

easily apply XML search to retrieve documents vey easily

and effectively. So document retrieval is also very important

paradigm. When documents are available electronically and

you need a hard copy, you can get the documents you need

very easily and quickly. For example in case of Documents

filed in litigation in federal, state, and local courts, including

bankruptcy, tax, and administrative courts and Public court

file information etc. In this case you cannot store all the

Paper ID: SUB155026 3021

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

information as relational database where just buy using any

structured query language user can fire the query and get the

result. To solve this type of purpose we are trying to import

new method which will allow you to search your document

by searching simple keyword over XML data. All documents

are stored as XML database and keyword searching results

are stored in separate document. So that next search will

begin with that document first where recently used keywords

search results are stored and if it does not found the keyword

search will begin with original data. This paradigm will

decrease the time required for searching and indirectly

improve the performance.

In this paper, we propose a fuzzy type-ahead search method

in XML data. Method searches the XML data on the fly as

user type in query keywords, even in the presence of minor

errors of their keywords. This method provides a friendly

interface for users to explore XML data, and can

significantly save users typing effort. In this paper, we study

research challenges that arise naturally in this computing

paradigm. The main challenge is search efficiency. Each

query with multiple keywords needs to be answered

efficiently. To make search really interactive, for each

keystroke on the client browser, from the time the user

presses the key to the time the results computed from the

server are displayed on the browser, the delay should be as

small as possible. An interactive speed requires this delay

should be within milliseconds. Notice that this time includes

the network transfer delay, execution time on the server, and

the time for the browser for its execution. This low-running-

time requirement is especially challenging when the backend

repository has a large amount of data. To achieve our goal,

we propose effective index structures and algorithms to

answer keyword queries in XML data. We examine effective

ranking functions and early termination techniques to

progressively identify top-k answers. We will maintain one

data view which stores the results of previous search with its

title and document too. As search keyword increase data

view size will also increases which will become the real

challenge, to maintain this data view. To summarize, we

make the following contributions:

 We formalize the problem of fuzzy type-ahead search in

XML data. .

 We propose effective index structures and efficient

algorithms to achieve a high interactive speed for fuzzy

type-ahead search in XML data.

 We develop ranking functions and early termination

techniques to progressively and efficiently identify the top-

k relevant answers.

 We develop a data view to store the successful search

results as title and document too.

 We have conducted an extensive experimental study. The

results show that our method achieves high search

efficiency and result quality.

The remainder of this paper is organized as follows: Section

2 gives the preliminaries. We formalize the problem of fuzzy

type-ahead search in XML data, propose a lowest common

ancestor (LCA)-based method and introduces a progressive

search method in Section 3. Extensive experimental

evaluations are provided in Section 4. We review related

work in Section 5 and conclude in Section 6.

2. Preliminaries

2.1 Notations

An XML document can be modeled as a rooted and labeled

tree. A node v in the tree corresponds to an element in the

XML document and has a label. For two nodes u and v, we

use “u v” (“u v,” respectively) to denote that node u is

an ancestor (descendant, respectively) of node v. We use “u

v” to denote that u v or u = v. For example, consider

the XML document in Fig. 1, we have paper (node 5)

author (node 7) and paper (node 12) conf (node 2).

A keyword query consists of a set of keywords {k1; k2; . . . ;

kl}. For each keyword ki, we call the nodes in the tree that

contain the keyword the content nodes for ki. The ancestor

nodes1 of the content nodes are called the quasi-content

nodes of the keyword. For example, consider the XML

document in Fig. 1, title (node 16) is a content node for

keyword “DB,” and conf (node 2) is a quasicontent node of

keyword “DB.”

Figure 1: An XML document.

2.2 Information Retrieval

Information retrieval might be regarded as an extension to

document retrieval where the documents that are returned are

processed to condense or extract the particular information

sought by the user. Thus document retrieval could be

followed by a text summarization stage that focuses on the

query posed by the user, or an information extraction

technique.

Here we are trying to discover the previously unknown

information by automatically extracting information from a

usually large amount of different unstructured textual

resources, which is known as Text Mining, by making them

structured resources like XML document. Text mining is the

combination of different processes like; Data Mining,

Information Retrieval, Statistics, Web Mining,

Computational Linguistics & Natural Language Processing

as shown in below fig 2.

Paper ID: SUB155026 3022

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: Text Mining

2.3 Keyword Search in XML data

In the literature, there are different ways to define the

answers to a keyword query on an XML document .A

commonly used one is based on the notion of lowest

common ancestor [20]. Given an XML document D and its

XML nodes v1; v2; . . . ; vm, we say a node u in the document

is the lowest common ancestor of these nodes if

and there does not exist

another node u‟ such that and .

Intuitively, each LCA of the keyword query is the LCA of a

set of content nodes corresponding to all the keywords in the

query. Many algorithms for XML keyword search use the

notion of LCA or its variants [19], [6], [5],[4], [7], [28]. For

a keyword query, the LCA-based algorithm first retrieves

content nodes in XML data that contain theinput keywords

using inverted indices. It then identifies the LCAs of the

content nodes, and takes the subtrees rooted at the LCAs as

the answer to the query. For example, a bibliography XML

document is shown in Fig. 1. Suppose a user issues a

keyword query “DB Tom.” The content nodes of “DB” and

“Tom” are {13,16} and {14,17}, respectively. Nodes 2, 12,

and 15 are LCAs of the keyword query. Notice that node 2 is

the LCA of nodes 13 and 17. Evidently, node 2 is less

relevant to the query than nodes 12 and 15, as nodes 13 and

17 correspond to values of different papers.

To address this limitation of using LCAs as query answers,

many methods have been proposed [6], [8], [5],[9], [32] to

improve search efficiency and result quality.

Papakonstantinou [33] proposed exclusive lowest common

ancestor (ELCA). Given a keyword query Q = {k1; k2; . . . ;

kl} and an XML document D, u 2 D is called an ELCA of Q,

if and only if there exists nodes v1 Ɛ Ik1; v2 Ɛ Ik2 ; . . . ; v„Ɛ

Ik„ such that u is the LCA of v1; v2; . . . ; vl, and for every vi,

the descendants of u on the path from u to vi are not LCAs of

Q nor ancestors of anyLCA of Q.

An LCA is an ELCA if it is still an LCA after excluding its

LCA descendants. For example, the ELCAs to the keyword

query “DB Tom” on the data in Fig. 1 are nodes 12 and 15.

Node 2 is not an ELCA as it is not an LCA after excluding

nodes 12 and 15. Xu and Papakonstantinou [33] proposed a

binary-search-based method to efficiently identify ELCAs.

2.4 Problem Definition

We formalize the problem of fuzzy type-ahead search in

XML data as follows:

Definition 1 (FUZZY TYPE-AHEAD SEARCH IN XML

DATA). Given an XML document D, a keyword query Q

={k1,k2,….kl} and an edit-distance threshold T. Let the

predicted-word set be Wk={w|w is a tokenized word in D and

there exists a prefix of w, ki
‟
, ed(ki,ki

‟
) <= T.} Let the

predicted answer set be RQ={r|r is a keyword-search result of

query {w1 Wk1, w2 Wk2 , . . . ,Wl Wkl}}. For the

keystroke that invokes Q, we return the top-k answers in RQ

for a given value k, ranked by their relevancy to Q.

Let treat the data and query string as lowercase strings. Now

focus on how to efficiently find the predicted answers,

among which we can find the best top-k relevant answers

using a ranking function. There are two challenges to support

fuzzy type-ahead search in XML data. The first one is how to

interactively and efficiently identify the predicted words that

have prefixes similar to the input partial keyword after each

keystroke from the user. The second one is how to

progressively and effectively compute the top-k predicted

answers of a query with multiple keywords, especially when

there are many predicted words.

2.5 Method for Keyword search

1. LCA Based Method

The lowest common ancestor (LCA) is a concept in graph

theory and computer science. Let T be a rooted tree with n

nodes. The lowest common ancestor between two nodes v

and w is defined as the lowest node in T that has both v and

w as descendants.

The LCA of v and w in T is the shared ancestor of v and w

that is located farthest from the root. There are different

ways to answer the query on an xml document, one

commonly used method is LCA based method [3]. Many

algorithms that use query over xml uses this method. Content

nodes are the parent node of the keyword. For example

consider keyword db in fig1 then content node of db is node

13 and node16.The server contains index structure of xml

document which each node is letter in keyword and leaf node

contain all nodes that contain the keyword this leaf node is

called inverted list.

Index Structures

We use a trie structure to index the words in the underlying

XML data. Each word w corresponds to a unique path from

the root of the trie to a leaf node. Each node on the path has a

label of a character in w. For each leaf node, we store an

inverted list of IDs of XML elements that contain the word

of the leaf node. For instance, consider the XML document

in Fig. 1. The trie structure for the tokenized words is shown

in Fig. 3 The word “mich” has a node ID of 10. Its inverted

list includes XML elements 18 and 26.

Procedure

 For keyword query the LCA based method retrieves

content nodes in xml that are in inverted lists.

 Identify the LCAs of content nodes in inverted list.

Paper ID: SUB155026 3023

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Takes the sub tree rooted at LCAs as answer to the query.

For example suppose the user typed the query “www db”

then the content nodes of db are{13,16} and for www are3

,the LCAs of these content nodes are nodes ,12,15,2,1.here

the nodes 3,13,12,15 are more relevant answers but nodes 2

and 1 are not relevant answers.

Limitation

 It gives irrelevant answers.

 The results are not of high quality.

2. ELCA Based Methods

To address the limitation of LCA based method exclusive

LCA (ELCA)[4] is proposed. It states that an LCA is ELCA

if it is still an LCA after excluding its LCA descendents. for

example suppose the user typed the query “db tom” then the

content nodes of db are{13,16} and for tom are{14.17} ,the

LCAs of these content nodes are nodes2,12,15,1.here the

ELCAs are 12,15.the subtree rooted with these nodes is

displayed which are relevant answers Node 2 is not an ELCA

as it is not an LCA after excluding nodes 12 and 15.

Figure 3: The trie on top of words in Fig. 1 (a part of

words).

The LCA-based fuzzy type-ahead search algorithm in XML

data has two main limitations. First, they use the “AND”

semantics between input keywords of a query, and ignore the

answers that contain some of the query keywords (but not all

the keywords). For example, suppose a user types in a

keyword query “DB IR Tom” on the XML document in Fig.

1. The ELCAs to the query are nodes 15 and 5. Although

node 12 does not have leaf nodes corresponding to all the

three keywords, it might still be more relevant than node 5

that contains many irrelevant papers. Second, in order to

compute the best results to a query, existing methods need

find candidates first before ranking them, and this approach

is not efficient for computing the best answers. A more

efficient algorithm might be able to find the best answers

without generating all candidates.

To address these limitations, we develop novel ranking

techniques and efficient search algorithms. In our approach,

each node on the XML tree could be potentially relevant to a

keyword query, and we use a ranking function to decide the

best answers to the query. For each leaf node in the trie. The

leaf node inverted list contains the content nodes and quasi

contend nodes, scores of the keyword. For computing top k

results heap based method [6] is used which uses the partial

virtual inverted lists which contain the higher score nodes so

to avoid the union of lists which is expensive. Fig. 4 gives

the extended trie structure.

Figure 4: Extended tier structure

3. Progressively Searching the Keyword

3.1 Working

Figure 5: working of keyword search with data view

Above figure 6 shows the working. Here for experimental

study purpose we have taken one document which is

containing more than 50 xml document data. After creating

its structure and index, when we will start keyword searching

it will start search first with data view and then it will start

searching original data if it doesn‟t find keyword in data

view

3.2 Ranking the Sub tree

There are two ranking function to compute rank/score

between node n and keyword ki

1) The case that n contains ki.

2) The case that n does not contain ki but has a descendant

containing ki.

Case 1: n contains keyword ki

Paper ID: SUB155026 3024

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The relevance/score of node n and keyword ki is computed

by

Where tf(ki,n) - no:of occurences of ki in subtree rooted n

idf(ki) - ratio of no:of nodes in xml to no:of nodes that

contain keyword ki

ntl(n) - length of n /nmax length, nmax=node with max terms

s - Constant set to 0.2

Assume user composed a query containing keyword “db”

score(13,db) = ln(1+1) *ln (27/2)

 (1- 0.2)+(0.2*1)

= 1.52

Case 2: node n does not contain keyword ki but its

descendant has ki

 Second ranking function to compute the score between n

and kj is

Where

P - Set of pivotal nodes

α - constant set to 0.8

- Distance between n and p

Assume the user composed query “db”

Score2 (12, db) = (0.8)*score1 (13, db)

 = 0.8 *1.52

 =1.21

3.3 Ranking Fuzzy Search

Given a keyword query Q={k1,k2,…..kl} in terms of fuzzy

search, a minimal-cost tree may not contain the exact input

keywords, but contain predicted words for each keyword. Let

predicted words be {w1,w2…..wl}the best similar prefix of

wi could be considered to be most similar to ki. The function

to quantify the similarity between ki and wi is

where ed – edit distance, ai – prefix, wi – predicted word, γ –

constant

4. Experimental Study

We have implemented our method on real applications using

our proposed techniques. We used some Reuters 21578

dataset. The sizes of dataset is about 100 in MB. We

randomly selected 50 queries for each data set and Table 1

gives some sample queries. We implemented the hybrid

algorithm of XRANK [19] for the LCA-based method. We

used the Dewey inverted list and hash index. We

implemented XRANK‟s ranking functions. We used the

cache for incremental computation. Program implemented in

JAVA. We conducted the evaluation on a PC running

Windows operating system with an Intel(R) @ 2.5 GHz CPU

and 4 GB RAM.

Table 1: Sample Keyword Query Used

Sr. No. Queries Typed Queries

1 Company compa

2 German germ

3 International intern

4 Parliament parl

5 Newyork newy

6 Derivatives deriv

4.1 Result Quality

This section evaluates result quality of the LCA-based
method and MCT-based method. We generated 50 keyword
queries. Answer relevance of the selected queries was judged
from discussions of in our group. As users are usually
interested in the top-k answers, we employed the top-k
precision, i.e., the ratio of the number of answers deemed to
be relevant in the first k results to k, to compare the LCA-
based method and the MCT-based method. Table 2 shows
the average top-k precision of the selected 50 queries. We
see that our data view based search method achieves much
higher result quality with less response time. This is
attributed to our effective ranking functions that rank both
content nodes and quasiconten nodes and incorporate
structural information into our ranking functions.

Table 2: Precision
Precision % Top 1 Top 10 Top 50

LCA 50 68 60

MCT 77 81 78

MCT-Data View 80 85 82

4.2 Scalability

This section evaluates the scalability of our algorithms. As

an example, we used the Reuters 21578 dataset. We varied

the number of XML documents in the data set from 100,

200. Fig. 6 shows the elapsed time of building the index

structure, the sizes of indexes, and the average search time

for 100 queries. We observe that our method scales very well

with the increase of the data. In particular, the size of the trie

is sublinear with the number of records. With the increase of

the data sizes, the average search time also increased

sublinearly. This is because of two main reasons. First, the

time of finding the predicted words depends on the number

of nodes on the trie, which increases sublinearly as the data

size increases. Second, our method to incrementally compute

the predicted words and progressively identify the predicted

answers can save a lot of computation. Third, very important

by using data view, we can store the search keywords and

related document to view, data view elapsed time for search

is less as compared to search which uses original large

volume of data. Figure 6 gives the analysis for total time

spend for different queries.

Paper ID: SUB155026 3025

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 6: Search Time

5. Related Work

Keyword search in XML data has attracted great attention

recently. Xu and Papakonstantinou [3] proposed smallest

lowest common ancestor (SLCA) to improve search

efficiency. Sun et al. [4] studied multiway SLCA-based

keyword search to enhance search performance. Schema free

XQuery [5] employed the idea of meaningful LCA, and

proposed a stack-based sort-merge algorithm by considering

XML structures and incorporating a new function mlcas into

XQuery. XSEarch [6] focuses on the semantics and the

ranking of the results, and extends keyword search. It

employs the semantics of meaningful relation between XML

nodes to answer keyword queries, and two nodes are

meaningfully related if they are in a same set, which can be

given by administrators or users. Li et al. [7] proposed

valuable LCA (VLCA) to improve the meaningfulness and

completeness of answers and devised a new efficient

algorithm to identify the answers based on a stack-based

algorithm. XKeyword [8] is proposed to offer keyword

proximity search over XML documents, which models XML

documents as graphs by considering IDREFs between XML

elements. Hristidis et al. [9] proposed grouped distance

minimum connecting tree (GDMCT) to answer keyword

queries, which groups the relevant subtrees to answer

keyword queries. It first identifies the minimum connected

tree, which is a subtree with minimum number of edges, and

then groups such trees to answer keyword queries. Shao et al.

[32] studied the problem of keyword search on XML views.

XSeek studied how to infer the most relevant return nodes

without elicitation of user preferences. Liu and Chen

proposed to reason and identify the most relevant answers.

Huang et al. discussed how to generate snippets of XML

keyword queries. Bao et al. [18] proposed to address the

ambiguous problem of XML keyword search through

studying search for and search via nodes.

In addition, the database research community has recently

studied the problem of keyword search in relational

databases [16], [20], [25],[26] graph databases [13], [23],

[12], and heterogeneous data sources. DISCOVER-II [25],

BANKS-I [26], BANKS-II [20], and DBXplorer [13] are

recent systems to answer keyword queries in relational

databases. DISCOVER and DBXplorer return the trees of

tuples connected by primary-foreign-key relationships that

contain all query keywords. DISCOVER-II extended

DISCOVER to support keyword proximity search in terms of

disjunctive (OR) semantics, different from DISCOVER

which only considers the conjunctive (AND) semantics.

BANKS proposed to use Steiner trees to answer keyword

queries. It first modeled relational data as a graph where

nodes are tuples and edges are foreign keys, and then found

Steiner trees in the graph as answers using an approximation

to the Steiner tree problem, which is proven to be an NP-hard

problem. BANKS-II improved BANKS-I by using

bidirectional expansion on graphs to find answers. He et al.

[12] proposed a partition based method to efficiently find

Steiner trees using the BLINKS index. Ding et al. [14]

proposed to use dynamic programming for identifying

Steiner trees. Dalvi et al. [Z] studied disk-based algorithms

for keyword search on large graphs, using a new concept of

“supernode graph.”

More recently, Kimelfeld and Sagiv [14] discussed keyword

proximity search in relational databases from theory

viewpoint. They showed that the answer of keyword

proximity search can be enumerated in ranked order with

polynomial delay under data complexity. Golenberg et al.

presented an incremental algorithm for enumerating subtrees

in an approximate order which runs with polynomial delay

and can find all top-k answers. Guo et al. [24] studied the

problem of data topology search on biological databases.

Sayyadian et al. [39] incorporated schema mapping into

keyword search and proposed a new method to answer

keyword search across heterogenous databases. Liu et al

incorporated [27] IR ranking techniques to rank answers on

relational data. They employed the techniques of phrase-

based and concept-based models to improve result quality.

Luo et al. [30] proposed a newranking method that adapts

state-of-the-art IR ranking functions and principles into

ranking tree-structured results composed of joined database

tuples. They incorporated the idea of skyline to rank

answers. Balmin et al. proposed Object-Rank [17] to

improve results quality by extending hub-and-authority

ranking-based method. This method is effective in ranking

objects, pages, and entities, but it may cannot effectively

rank tree-structured results (e.g., Steiner trees), since it does

not consider structure compactness of an answer in its

ranking function. Richardson and Domingos proposed to

combine page content and link structure to answer queries.

Tao and Yu [36] proposed to find co-occurring terms of

query keywords in addition to the answers, in order to

provide users relevant information to refine the answers.

Koutrika et al [15] proposed data clouds over structured data

to summarize the results of keyword searches over structured

data and use them to guide users to refine searches. Zhang et

al. [35] and Felipe et al. [29] studied keyword search on

spatial databases by combining inverted lists and R-tree

indexes. Tran et al. [37] studied top-k keyword search on

RDF data using summarized RDF graph. Qin et al.[39]

studied three different semantics of m-keyword queries,

namely, connect-tree semantics, distinct core semantics, and

distinct root semantics, to answer keyword queries in relation

databases. The search efficiency is achieved by new tuple

reduction approaches that prune unnecessary tuples in

relations effectively followed by processing the final results

over the reduced relations. Chu et al. [22] proposed to

combine forms and keyword search, and studied effective

summary techniques to design forms. Yu et al. [34] and Vu

et al. [38] studied keyword search over multiple databases in

P2P environment. They emphasized on how to select

relevant database sources in P2P environments. Chen et al.

Paper ID: SUB155026 3026

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[21] gave an excellent tutorial of keyword search in XML

data and relational databases.

Type-ahead search is a new topic to query relational

databases. Li et al. [31] studied type-ahead search in

relational databases, which allows searching on the

underlying relational databases on the fly as users type in

query keywords. Ji et al. [11] studied fuzzy type-ahead

search on a set of tuples/documents, which can on the fly

find relevant answers by allowing minor errors between

input keywords and the underlying data. A straightforward

method for type ahead search in XML data is to first find all

predicted words, and then use existing search semantics, e.g.,

LCA and ELCA, to compute relevant answers based on the

predicted words. However, this method is very time

consuming for finding top-k answers. To address this

problem, we propose to progressively find the most relevant

answers. For exact search, we propose to incrementally

compute predicted words. For fuzzy search, we use existing

techniques [11] to compute predicted words of query

keywords. We extend the ranking functions in [31] to

support fuzzy search, and propose new index structures and

efficient algorithms to progressively find the most relevant

answers. Text mining which is the combination of document

retrieval, information retrieval, web mining etc, is also added

to create a data view, which will make keyword searching

faster as compared to ordinary searching where every search

begins with the original data.

6. Conclusion

In this paper, we studied the problem of fuzzy type-ahead

search in XML data. We proposed effective index structures,

efficient algorithms, and novel optimization techniques to

progressively and efficiently identify the top-k answers. We

examined the LCA-based method to interactively identify the

predicted answers. We have developed a minimal-cost-tree-

based search method to efficiently and progressively identify

the most relevant answers. We proposed a heap-based

method to avoid constructing union lists on the fly. We

devised a forward-index structure to further improve search

performance. We have implemented method with data view,

and the experimental results show that our method achieves

high search efficiency and result quality.

References

[1] G. Li and J. Feng, “Efficient Fuzzy Type-Ahead Search

in XML Data,” MAY 2012

[2] S. Ji, G. Li, C. Li, and J. Feng, “Efficient Interactive

Fuzzy Keyword Search,” Proc. Int‟l Conf. World Wide

Web (WWW), pp. 371-380,2009.

[3] Y. Xu and Y. Papakonstantinou, “Efficient Keyword

Search for Smallest Lcas in XML Databases,” Proc.

ACM SIGMOD Int‟l Conf. Management of Data, pp.

537-538, 2005.

[4] C. Sun, C.Y. Chan, and A.K. Goenka, “Multiway Slca-

Based Keyword Search in Xml Data,” Proc. Int‟l Conf.

World Wide Web (WWW), pp. 1043-1052, 2007.

[5] Y. Li, C. Yu, and H.V. Jagadish, “Schema-Free

Xquery,” Proc. Int‟l Conf. Very Large Data Bases

(VLDB), pp. 72-83, 2004.

[6] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv, “Xsearch:

A SemanticSearch Engine for Xml,” Proc. Int‟l Conf.

Very Large Data Bases (VLDB), pp. 45-56, 2003.

[7] G. Li, J. Feng, J. Wang, and L. Zhou, “Effective

Keyword Search for Valuable lcas over XML

Documents,” Proc. Conf. Information and Knowledge

Management (CIKM), pp. 31-40, 2007.

[8] V. Hristidis, Y. Papakonstantinou, and A. Balmin,

“KeywordProximity Search on XML Graphs,” Proc.

Int‟l Conf. Data Eng. (ICDE), pp. 367-378, 2003.

[9] V. Hristidis, N. Koudas, Y. Papakonstantinou, and D.

Srivastava, “Keyword Proximity Search in Xml Trees,”

IEEE Trans. Knowledge and Data Eng., vol. 18, no. 4,

pp. 525-539, Apr. 2006

[10] Y. Huang, Z. Liu, and Y. Chen, “Query Biased Snippet

Generation in Xml Search,” Proc. ACM SIGMOD Int‟l

Conf. Management of Data, pp. 315-326, 2008

[11] S. Ji, G. Li, C. Li, and J. Feng, “Efficient Interactive

Fuzzy Keyword Search,” Proc. Int‟l Conf. World Wide

Web (WWW), pp. 371-380, 2009\

[12] H. He, H. Wang, J. Yang, and P.S. Yu, “Blinks:

Ranked Keyword Searches on Graphs,” Proc. ACM

SIGMOD Int‟l Conf. Management of Data, pp. 305-

316, 2007

[13] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R.

Desai, and H. Karambelkar, “Bidirectional Expansion

for Keyword Search on Graph Databases,” Proc. Int‟l

Conf. Very Large Data Bases (VLDB), pp. 505-516,

2005

[14] B. Kimelfeld and Y. Sagiv, “Finding and

Approximating Top-k Answers in Keyword Proximity

Search,” Proc. ACM SIGMODSIGACT- SIGART

Symp. Principles of Database Systems (PODS), pp.

173-182, 2006

[15] G. Koutrika, Z.M. Zadeh, and H. Garcia-Molina, “Data

Clouds: Summarizing Keyword Search Results over

Structured Data,” Proc. Int‟l Conf. Extending Database

Technology: Advances in Database Technology

(EDBT), pp. 391-402, 2009.

[16] S. Agrawal, S. Chaudhuri, and G. Das, “Dbxplorer: A

System for Keyword-Based Search over Relational

Databases,” Proc. Int‟l Conf. Data Eng. (ICDE), pp. 5-

16, 2002.

[17] A. Balmin, V. Hristidis, and Y. Papakonstantinou,

“Objectrank: Authority-Based Keyword Search in

Databases,” Proc. Int‟l Conf. Very Large Data Bases

(VLDB), pp. 564-575, 2004.

[18] Z. Bao, T.W. Ling, B. Chen, and J. Lu, “Effective XML

Keyword Search with Relevance Oriented Ranking,”

Proc. Int‟l Conf. Data Eng. (ICDE), 2009.

[19] H. Bast and I. Weber, “Type Less, Find More: Fast

Autocompletion Search with a Succinct Index,” Proc.

Ann. Int‟l ACM SIGIR Conf. Research and

Development in Information Retrieval (SIGIR), pp.

364-371, 2006.

[20] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and

S. Sudarshan, “Keyword Searching and Browsing in

Databases Using Banks,” Proc. Int‟l Conf. Data Eng.

(ICDE), pp. 431-440, 2002.

[21] Y. Chen, W. Wang, Z. Liu, and X. Lin, “Keyword

Search on Structured and Semi-Structured Data,” Proc.

ACM SIGMOD Int‟l Conf. Management of Data, pp.

1005-1010, 2009.

Paper ID: SUB155026 3027

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[22] E. Chu, A. Baid, X. Chai, A. Doan, and J.F. Naughton,

“Combining Keyword Search and Forms for Ad Hoc

Querying of Databases,” Proc. ACM SIGMOD Int‟l

Conf. Management of Data, pp. 349-360, 2009.

[23] B. Ding, J.X. Yu, S. Wang, L. Qin, X. Zhang, and X.

Lin, “Finding Top-k Min-Cost Connected Trees in

Databases,” Proc. Int‟l Conf. Data Eng. (ICDE), pp.

836-845, 2007.

[24] L. Guo, J. Shanmugasundaram, and G. Yona,

“Topology Search over Biological Databases,” Proc.

Int‟l Conf. Data Eng. (ICDE), pp. 556-565, 2007.

[25] V. Hristidis, L. Gravano, and Y. Papakonstantinou,

“Efficient Ir- Style Keyword Search over Relational

Databases,” Proc. Int‟l Conf. Very Large Data Bases

(VLDB), pp. 850-861, 2003.

[26] V. Hristidis and Y. Papakonstantinou, “Discover:

Keyword Search in Relational Databases,” Proc. Int‟l

Conf. Very Large Data Bases (VLDB), pp. 670-681,

2002.

[27] F. Liu, C.T. Yu, W. Meng, and A. Chowdhury,

“Effective Keyword Search in Relational Databases,”

Proc. ACM SIGMOD Int‟l Conf. Management of Data,

pp. 563-574, 2006.

[28] Multiobjective Optimization: NSGA II,” KanGAL

report 200001, Indian Institute of Technology, Kanpur,

India, 2000. (technical report style)

[29] J. Geralds, "Sega Ends Production of Dreamcast,"

vnunet.com, para. 2, Jan. 31, 2001. [Online]. Available:

http://nl1.vnunet.com/news/1116995. [Accessed: Sept.

12, 2004]. (General Internet site)

[30] Z. Liu and Y. Chen, “Identifying Meaningful Return

Information for Xml Keyword Search,” Proc. ACM

SIGMOD Int‟l Conf. Management of Data, pp. 329-

340, 2007.

[31] Z. Liu and Y. Chen, “Reasoning and Identifying

Relevant Matches for Xml Keyword Search,” Proc.

VLDB Endowment, vol. 1, no. 1, pp. 921-932, 2008.

[32] Y. Luo, X. Lin, W. Wang, and X. Zhou, “Spark: Top-k

Keyword Query in Relational Databases,” Proc. ACM

SIGMOD Int‟l Conf. Management of Data, pp. 115-

126, 2007.

[33] G. Li, S. Ji, C. Li, and J. Feng, “Efficient Type-Ahead

Search on Relational Data: A Tastier Approach,” Proc.

ACM SIGMOD Int‟l Conf. Management of Data, pp.

695-706, 2009.

[34] F. Shao, L. Guo, C. Botev, A. Bhaskar, M.M.M.

Chettiar, F.Y. 0002, and J. Shanmugasundaram,

“Efficient Keyword Search over Virtual XML Views,”

Proc. Int‟l Conf. Very Large Data Bases (VLDB), pp.

1057-1068, 2007.

[35] Y. Xu and Y. Papakonstantinou, “Efficient LCA Based

Keyword Search in XML Data,” Proc. Int‟l Conf.

Extending Database Technology: Advances in

Database Technology (EDBT), pp. 535-546, 2008.

[36] B. Yu, G. Li, K.R. Sollins, and A.K.H. Tung,

“Effective Keyword- Based Selection of Relational

Databases,” Proc. ACM SIGMOD Int‟l Conf.

Management of Data, pp. 139-150, 2007.

[37] D. Zhang, Y.M. Chee, A. Mondal, A.K.H. Tung, and

M. Kitsuregawa, “Keyword Search in Spatial

Databases: Towards Searching by Document,” Proc.

Int‟l Conf. Data Eng. (ICDE), pp. 688-699, 2009.

[38] Y. Tao and J.X. Yu, “Finding Frequent Co-Occurring

Terms in Relational Keyword Search,” Proc. Int‟l

Conf. Extending Database Technology: Advances in

Database Technology (EDBT), pp. 839-850, 2009.

[39] T. Tran, H. Wang, S. Rudolph, and P. Cimiano, “Top-k

Exploration of Query Candidates for Efficient

Keyword Search on Graph-Shaped (RDF) Data,” Proc.

Int‟l Conf. Data Eng. (ICDE), pp. 405-416, 2009.

[40] Q.H. Vu, B.C. Ooi, D. Papadias, and A.K.H. Tung, “A

Graph Method for Keyword-Based Selection of the

Top-k Databases,” Proc. ACM SIGMOD Int‟l Conf.

Management of Data, pp. 915-926, 2008.

[41] L. Qin, J.X. Yu, and L. Chang, “Keyword Search in

Databases: The Power of Rdbms,” Proc. ACM

SIGMOD Int‟l Conf. Management of Data, pp. 681-

694, 2009

Author Profile

Supriya. N. Chaudhari received the B.E. in Computer

Science & Engineering from Jawaharlal darda Institute

of Engineering and Technology, Yavatmal

Maharashtra, India in 2006 and pursuing M.E. degrees

in Computer Science & Engineering from Prof. Ram

Meghe Inst. Of Tech. & Res, Badnera, Amravati, Maharashtra

India.

Paper ID: SUB155026 3028

http://nl1.vnunet.com/news/1116995

