
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Challenges for HDFS to Read and Write Using

Different Technologies

Sunil Kumar S
1
, Sanjeev G Kanabargi

 2

1, 2 Manglore Institute of Technology and Engineering, Moodbidari, Karnataka

Abstract: Advancement in information and technology gives us ability to store a huge amount of data. In other terms we have huge

bandwidth to store and analyze huge data which can be also termed as Big-Data. There are many tools and framework that can be used

to manage and analyze the Big-data and Hadoop is one the most used frame work to analyze and manage Big-data. Hadoop uses

HDFS to store and manage the Big-data and we can use different tools to read and write into HDFS. This paper compares different

technologies that can be used to read and write into HDFS.

Keywords: HDFS, Big-Data, YARN, .

1. Introduction

Google had some challenges in analyze the Big-data from the

database, It had to analyze Big-Data, do parallel computation

in hundreds or thousands of machines with large complex

codes and generate results in reasonable amount of time. It

also had issues of how to do parallel computing with data

distributed over all machines and handles failures of machine

and data residing in machine on failures.

To deal with these issues they designed a new abstraction

that allows to express complex codes for parallelization,

fault-tolerance, data distribution and load balancing in a

simple way by hiding them into libraries. They come up with

the map and reduce primitives which made easy to handle the

issues mentioned above.

Hadoop is an open source frame work which is developed by

a group of engineers from yahoo. They referred white papers

published by Google Inc. on map-reduce and using same

framework they extended it to make hadoop framework. This

framework is very much useful while analyzing unstructured

Big-Data provide features like reliability and data motion.

Hadoop uses multiple machines to process and store Big-

Data, to perform these operations, it uses map-reduce

programing paradigm, where the applications are divided into

small sub applications and they are sent to different

connected machines for parallel execution of sub

applications. In addition, It provides Hadoop Distributed File

System[1] (HDFS) , where data is stored. Both map-reduce

and HDFS framework is designed in manner which can

handles node failures automatically.

Map-Reduce are two functions namely mapper function and

reducer function, Mapper function get input data and it

partially processes it by mapping, sorting, shuffling and

making it ready for reducer function, this partially processed

intermediate data is not stored into system and remove from

system after the data is given to reducer job. In this paper we

exploring different ways or technologies which can be used

by mapper and reducer program to read and write to HDFS.

2. Literature Survey

2.1. Big Data

Big Data encompasses everything from click stream data

from the web to genomic and proteomic data from biological

research and medicines. Big Data is a heterogeneous mix of

data both structured (traditional datasets –in rows and

columns like DBMS tables, CSV's and XLS's) and

unstructured data like e-mail attachments, manuals, images,

PDF documents, medical records such as x-rays, ECG and

MRI images, forms, rich media like graphics, video and

audio, contacts, forms and documents. Businesses are

primarily concerned with managing unstructured data,

because over 80 percent of enterprise data is unstructured

[26] and require significant storage space and effort to

manage.“Big data” refers to datasets whose size is beyond

the ability of typical database software tools to capture, store,

manage, and analyse [3].

Big Data encompasses everything from click stream data

from the web to genomic and proteomic data from biological

research and medicines. Big Data is a heterogeneous mix of

data both structured (traditional datasets –in rows and

columns like DBMS tables, CSV's and XLS's) and

unstructured data like e-mail attachments, manuals, images,

PDF documents, medical records such as x-rays, ECG and

MRI images, forms, rich media like graphics, video and

audio, contacts, forms and documents. Businesses are

primarily concerned with managing unstructured data,

because over 80 percent of enterprise data is unstructured

[26] and require significant storage space and effort to

manage.“Big data” refers to datasets whose size is beyond

the ability of typical database software tools to capture, store,

manage, and analyse [3].

Discovery analytics against big data can be enabled by

different types of analytic tools, including those based on

SQL queries, data mining, statistical analysis, fact clustering,

data visualization, natural language processing, text analytics,

artificial intelligence etc [4-6]. A unique challenge for

researchers system and academicians is that the large datasets

needs special processing systems [5]. Map Reduce over

Paper ID: SUB154956 2837

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

HDFS gives Data Scientists [1-2] the techniques through

which analysis of Big Data can be done. HDFS is a

distributed file system architecture which encompasses the

original Google File System [13].Map Reduce jobs use

efficient data processingtechniques which can be applied in

each of the phases of MapReduce; namely Mapping,

Combining, Shuffling,Indexing, Grouping and Reducing [7].

Discovery analytics against big data can be enabled by

different types of analytic tools, including those based on

SQL queries, data mining, statistical analysis, fact clustering,

data visualization, natural language processing, text analytics,

artificial intelligence etc [4-6]. A unique challenge for

researchers system and academicians is that the large datasets

needs special processing systems [5]. Map Reduce over

HDFS gives Data Scientists [1-2] the techniques through

which analysis of Big Data can be done. HDFS is a

distributed file system architecture which encompasses the

original Google File System[13].Map Reduce jobs use

efficient data processing techniques which can be applied in

each of the phases of MapReduce; namely Mapping,

Combining, Shuffling,Indexing, Grouping and Reducing[7].

Driven by very similar requirements, software developers at

Yahoo!, Facebook, and other large Web companies followed

suit. Taking Google‟s GFS and Map Reduce papers as rough

technical specifications, open-source equivalents were

developed, and the Apache Hadoop Map Reduce platform

and its underlying file system (HDFS, the Hadoop

Distributed File System) were born [1] [12]. The Hadoop

system has quickly gained traction, and it is now widely used

for use cases including Web indexing, clickstream and log

analysis, and certain large-scale information extraction and

machine learning tasks. Soon tired of the low-level nature of

the Map Reduce programming model, the Hadoop

community developed a set of higher-level declarative

languages for writing queries and data analysis pipelines that

are compiled into Map Reduce jobs and then executed on the

Hadoop Map Reduce platform. Popular languages include

Pig from Yahoo! [18], Jaql from IBM [28], and Hive from

Facebook [18]. Pig is relational-algebra-like in nature, and is

reportedly used for over 60% of Yahoo!‟s

MapReduce use cases; Hive is SQL-inspired and reported to

be used for over 90% of the Facebook Map Reduce use

cases. Microsoft‟s technologies include a parallel runtime

system called Dryad and two higher-level programming

models, Dryad LINQ and the SQLlike SCOPE language [27],

which utilizes Dryad under the covers. Interestingly,

Microsoft has also recently announced that its future “Big

Data” strategy includes support for Hadoop[24].

2.2. Apache's Hadoop 1.x and Hadoop 2.x with YARN

Hadoop[1] is an open source project of apache which

implements Google's map-reduce[2] programing model.

Hadoop have 3 ways to install on hardware, they are: stand

alone, single node and Multi node cluster[3]. Hadoop

architecture is evolved and developed by apache[3] group,

from hadoop 1.x to hadoop 2.x[3] had been into many

changes like introduction of map-reduce v2 or YARN[6].

Hadoop runs on JVM[4] (Java Virtual Machine). With

respect to Single node and Multi node hadoop1.x JVM

creates different instances of JVM for different nodes and

trackers. The different nodes are Name Node[5], Data Node,

Secondary Name Node and trackers are Job Tracker, Task

Tracker, these works together and provide us Hadoop frame

work. The Name Node will be holding the meta-data for

whole system which can help us to locate the data in the

system. The Data Node primary task is to store data, analyze

it locally and generate results. Secondary Name node will be

capturing the snapshot of the Name Node so it can take place

of Name node at the time of failure. The Job Tracker is the

service with in Hadoop that farms out Map-Reduce tasks to

specific nodes in the cluster, the data nodes have the data and

Data Node JVM will be running on them properly, the data

nodes which aren't working properly are deemed to have

failed and their work is scheduled on a different Task

Tracker. The Task Tracker report back to the Job Tracker

about the status of its processing, if everything worked well

then, it will reply with result of else it will reply a failure

message to Job Tracker, then job tracker will decide what to

do, it may assign same task to another task tracker with

another data node. When whole work is completed the Job

Tracker updates it status to Name Node. Client applications

can use the Job Tracker for the work information which

includes time to process, ID etc.

2.2.1. Hadoop 1

In Hadoop 1, a single Namenode managed the entire

namespace for a Hadoop cluster. With HDFS federation,

multiple Namenode servers manage namespaces and this

allows for horizontal scaling, performance improvements,

and multiple namespaces. The implementation of HDFS

federation allows existing Namenode configurations to run

without changes. For Hadoop administrators, moving to

HDFS federation requires formatting Namenodes, updating

to use the latest Hadoop cluster software, and adding

additional Namenodes to the cluster.

2.2.2. Hadoop 2: YARN

HDFS federation brings important measures of scalability

and reliability to Hadoop. YARN, the other major advance in

Hadoop 2, brings significant performance improvements for

some applications, supports additional processing models,

and implements a more flexible execution engine.

Paper ID: SUB154956 2838

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

YARN is a resource manager that was created by separating

the processing engine and resource management capabilities

of MapReduce as it was implemented in Hadoop 1. YARN is

often called the operating system of Hadoop because it is

responsible for managing and monitoring workloads,

maintaining a multi-tenant environment, implementing

security controls, and managing high availability features of

Hadoop.

YARN supports multiple processing models in addition to

MapReduce. One of the most significant benefits of this is

that we are no longer limited to working the often I/O

intensive, high latency MapReduce framework. This advance

means Hadoop users should be familiar with the pros and

cons of the new processing models and understand when to

apply them to particular use cases.

3. Avro

Apache Avro™ is a data serialization system.

Avro provides:

 Rich data structures.

 A compact, fast, binary data format.

 A container file, to store persistent data.

 Remote procedure call (RPC).

 Simple integration with dynamic languages

3.1. Schemas

Avro relies on schemas. When Avro data is read, the schema

used when writing it is always present. This permits each datum

to be written with no per-value overheads, making serialization

both fast and small. This also facilitates use with dynamic,

scripting languages, since data, together with its schema, is fully

self-describing.

When Avro data is stored in a file, its schema is stored with it,

so that files may be processed later by any program. If the

program reading the data expects a different schema this can be

easily resolved, since both schemas are present. When Avro is

used in RPC, the client and server exchange schemas in the

connection handshake. (This can be optimized so that, for most

calls, no schemas are actually transmitted.) Since both client and

server both have the other's full schema, correspondence

between same named fields, missing fields, extra fields, etc. can

all be easily resolved. Avro schemas are defined with JSON .

This facilitates implementation in languages that already have

JSON libraries.

3.2. Comparison with other systems

Avro provides functionality similar to systems such as Thrift,

Protocol Buffers, etc. Avro differs from these systems in the

following fundamental aspects.

Dynamic typing: Avro does not require that code be

generated. Data is always accompanied by a schema that permits

full processing of that data without code generation, static

datatypes, etc. This facilitates construction of generic data-

processing systems and languages.

Untagged data: Since the schema is present when data is read,

considerably less type information need be encoded with data,

resulting in smaller serialization size.

No manually-assigned field IDs: When a schema changes,

both the old and new schema are always present when

processing data, so differences may be resolved symbolically,

using field names.

3.3. Sequiential file

Sequence Files are flat files consisting of binary key/value

pairs. SequenceFile provides SequenceFile.Writer,

SequenceFile.Reader and SequenceFile.Sorter classes for

writing, reading and sorting respectively. There are three

SequenceFile Writers based on the

SequenceFile.CompressionType used to compress key/value

pairs:

Writer: Uncompressed records.

Record Compress Writer: Record-compressed files, only

compress values.

Block Compress Writer: Block-compressed files, both keys

& values are collected in 'blocks' separately and compressed.

The size of the 'block' is configurable.

The actual compression algorithm used to compress key

and/or values can be specified by using the appropriate

Compression Codec. The recommended way is to use the

static create Writer methods provided by the Sequence File

to chose the preferred format. The Sequence File.Reader acts

as the bridge and can read any of the above Sequence File

formats. Sequence File Formats Essentially there are 3

different formats for Sequence Files depending on the

Compression Type specified. All of them share a common

header described below.

Sequence File Header

Version - 3 bytes of magic header SEQ, followed by 1 byte

of actual version number (e.g. SEQ4 or SEQ6)

KeyClassName -key class

ValueClassName - value class

Compression - A boolean which specifies if compression is

turned on for keys/values in this file.

BlockCompression - A boolean which specifies if block-

compression is turned on for keys/values in this file.

Compression codec - CompressionCodec class which is

used for compression of keys and/or values (if compression is

enabled).

Metadata - SequenceFile.Metadata for this file.

Sync - A sync marker to denote end of the header.

3.4. HBase

HBase is a distributed database, meaning it is designed to run

on a cluster of dozens to possibly thousands or more servers.

As a result it is more complicated to install than a single

RDBMS running on a single server. And all the typical

problems of distributed computing begin to come into play

Paper ID: SUB154956 2839

http://www.json.org/
http://thrift.apache.org/
http://code.google.com/p/protobuf/
https://hadoop.apache.org/docs/current/api/org/apache/hadoop/io/compress/CompressionCodec.html
https://hadoop.apache.org/docs/current/api/org/apache/hadoop/io/SequenceFile.html#Header
https://hadoop.apache.org/docs/current/api/org/apache/hadoop/io/SequenceFile.html#Header

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

such as coordination and management of remote processes,

locking, data distribution, network latency and number of

round trips between servers. Fortunately HBase makes use of

several other mature technologies, such as Apache Hadoop

and Apache ZooKeeper, to solve many of these issues. The

figure below shows the major architectural components in

HBase.

In the above figure you can see there is a single HBase

master node and multiple region servers. (Note that it is

possible to run HBase in a multiple master setup, in which

there is a single active master.) HBase tables are partitioned

into multiple regions with each region storing a range of the

table's rows, and multiple regions are assigned by the master

to a region server.

HBase is a column-oriented data store, meaning it stores data

by columns rather than by rows. This makes certain data

access patterns much less expensive than with traditional

row-oriented relational database systems. For example, in

HBase if there is no data for a given column family, it simply

does not store anything at all; contrast this with a relational

database which must store null values explicitly. In addition,

when retrieving data in HBase, you should only ask for the

specific column families you need; because there can literally

be millions of columns in a given row, you need to make sure

you ask only for the data you actually need.

The HDFS component is the Hadoop Distributed Filesystem,

a distributed, fault-tolerant and scalable filesystem which

guards against data loss by dividing files into blocks and

spreading them across the cluster; it is where HBase actually

stores data. Strictly speaking the persistent storage can be

anything that implements the Hadoop FileSystem API, but

usually HBase is deployed onto Hadoop clusters running

HDFS. In fact, when you first download and install HBase on

a single machine, it uses the local filesystem until you change

the configuration!

3.5. Hadoop Java Map-reduce Libraries

MapReduce has been emerging as a popular programming

paradigm for data intensive computing in clustered

environments such as enterprise data-centers and clouds.

There has been an extensive use of the MapReduce as a

framework for solving embarassingly parallel problems,

using a large number of computers (nodes), collectively

referred to as a cluster. These frameworks support ease

computation of petabytes of data mostly through the use of a

distributed file system. For example, the Google File System

- used bythe proprietary 'Google Map-Reduce', or the

'Hadoop Distributed File System' used by Hadoop, an open

source product from Apache.

In the "Map", the master node takes the input, divides it up

into smaller sub-problems, and distributes those to work

nodes. The worker node processes the smaller problem, and

passes the answer back to its master node. In the "Reduce",

the master node then takes the answers to all the sub-

problems and combines them in a way to get the final output

after reduces. The advantage of MapReduce is that it allows

for distributed processing of the map and reduction

operations. Provided each mapping operation is independent

of the other, all maps can be performed in parallel and so is

true for reduce.

Figure above: Mapping creates a new output list by applying a

function to individual elements of an input list.

Figure above: Reducing a list iterates over the input values to

produce an aggregate value as output.

3.6. MapReduce abstraction on top of CometCloud

We found that the file writes and reads to the distributed file

system, and have an overhead especially for smaller data

sizes in the order of few tens of GB's. Our solution provides

the MapReduce programming framework built over the

Comet framework which used TCP sockets for

communication and coordination, and uses in-memory

operations for data whenever possible. Our objectives were:

Understand the behaviors and limitations of MapReduce in

the case of small to moderate data sets (understand what the

cross over points are)

Develop coordination and interaction framework to

complement MapReduce-Hadoop to address these

shortcomings

Demonstrate and evaluate using a real world application

Paper ID: SUB154956 2840

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

We use the Comet and its services to build a MapReduce

infrastructure that addresses the above requirements -

specifically enable pull based scheduling of Map tasks as

well as stream based coordination and data exchange. The

framework is based on the master-worker concept already

supported by Comet. CometG is a decentralized (peer-to-

peer) computational infrastructure that extends Desktop Grid

environments to support applications that have high

computational requirement. It provides a decentralized and

scalable tuple-space, efficient communication and

coordination support, and application-asynchronous iterative

algorithms using the master-worker/BOT paradigm.

Our System's interfaces are similar to the Hadoop

MapReduce framework, to make applications built on

Hadoop easily portable to Comet-based framework. The

details of the implementation and evaluation of an actual

pharmaceutical problem, with its results have been described.

We found out that solution can be used to accelerate the

computations of medium sized data by delaying or avoiding

the use of distributed file reads and writes.

4. Methodology

The experiment bed is setup with one name node and 3 data

nodes. Name node have 8GB of RAM, 500 GB of HDD.

Data nodes have 4 GB of RAM, 500 GB of HDD. All

machine is powered with intel i5 1.7 Ghz speed.

The experiment ran for different size of big data sample

ranging from 1GB to 10 GB data set and output is tabulated.

5. Result and Discussion

5.1. Sequential file

a) When you use sequential file as Source, at the time of

Compilation it will convert to native format from ASCII

whereas, when you go for using datasets conversion is not

required. Also, by default sequential files we be Processed

in sequence only. Sequential files can accommodate up to

2GB only. Sequential files does not support NULL values.

All the above can me overcome using dataset Stage but

selection is depends on the Requirement suppose if you

want to capture rejected data in that case you need to use

sequential file or file set stage.

b) Sequential file is used to Extract the data from flat files and

load the data into flat files and limit is 2GB.Dataset is a

intermediate stage and it has parallelism when load data

into dataset and it improve the performance.

c) Data set mainly consists of two files.

 Descriptor file which consists of Metada,data location

but not actual data itself

 Data file contains the data in multiple files and one file

file per partition.

 Orchadmin command is used to delete the datasets where

as rm unix command is used to remove the flat files.

5.2. Observation regarding HBase and HDFS

HDFS is a distributed file system and has the following

properties:

 It is optimized for streaming access of large files. You

would typically store files that are in the 100s of MB

upwards on HDFS and access them through MapReduce to

process them in batch mode.

 HDFS files are write once files. You can append to files in

some of the recent versions but that is not a feature that is

very commonly used. Consider HDFS files as write-once

and read-many files. There is no concept of random writes.

 HDFS doesn't do random reads very well.

HBase on the other hand is a database that stores it's data in a

distributed filesystem. The filesystem of choice typically is

HDFS owing to the tight integration between HBase and

HDFS. Having said that, it doesn't mean that HBase can't

work on any other filesystem. It's just not proven in

production and at scale to work with anything except HDFS.

HBase provides you with the following:

 Low latency access to small amounts of data from within a

large data set. You can access single rows quickly from a

billion row table.

 Flexible data model to work with and data is indexed by

the row key.

 Fast scans across tables.

 Scale in terms of writes as well as total volume of data.

6. Conclusion

HDFS reading and writing methods or technologies can

selected depending upon the type of data or scenario we

facing. We found that sequential file is slower than normal

file system because of extra data overhead with sequential

file and it can be used for data storage in memory but not

HDFS. Similarly HBase kind of system is good for data with

structure and where we need to extract data in columnar

manner rather than row by row.

References

[1] Jefry Dean and Sanjay Ghemwat, MapReduce:A

Flexible Data Processing Tool, Communications of the

ACM, Volume 53, Issuse.1,January 2010, pp 72-77.

[2] Jefry Dean and Sanjay Ghemwat,.MapReduce:

Simplified data processing on large clusters,

Communications of the ACM, Volume 51 pp. 107–113,

2008

Paper ID: SUB154956 2841

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[3] Brad Brown, Michael Chui, and James Manyika, Are

you ready for the era of „big

data‟?,McKinseyQuaterly,Mckinsey Global Institute,

October 2011.

[4] DunrenChe, MejdlSafran, and ZhiyongPeng, From Big

Data to Big Data Mining: Challenges, Issues, and

Opportunities, DASFAA Workshops 2013, LNCS 7827,

pp. 1–15, 2013.

[5] MarcinJedyk, MAKING BIG DATA, SMALL, Using

distributed systems for processing, analysing and

managing large huge data sets, Software Professional‟s

Network, Cheshire Data systems Ltd.

[6] OnurSavas, YalinSagduyu, Julia Deng, and Jason

Li,Tactical Big Data Analytics: Challenges, Use Cases

and Solutions, Big Data Analytics Workshop in

conjunction with ACM Sigmetrics 2013,June 21, 2013.

[7] Kyuseok Shim, MapReduce Algorithms for Big Data

Analysis, DNIS 2013, LNCS 7813, pp. 44–48, 2013.

[8] Raja.Appuswamy,ChristosGkantsidis,DushyanthNarayan

an,OrionHodson,AntonyRowstron, Nobody ever got

fired for buying a cluster, Microsoft Research,

Cambridge, UK, Technical Report,MSR-TR-2013-2

[9] Carlos Ordonez, Algorithms and Optimizations for Big

Data Analytics: Cubes, Tech Talks,University of

Houston, USA.

[10] Spyros Blanas, Jignesh M. Patel,VukErcegovac, Jun

Rao,Eugene J. Shekita, YuanyuanTian, A Comparison of

Join Algorithms for Log Processing in MapReduce,

SIGMOD‟10, June 6–11, 2010, Indianapolis, Indiana,

USA.

[11] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M.

Hellerstein,JohnGerth, Justin Talbot,KhaledElmeleegy,

Russell Sears, Online Aggregation and Continuous

Query support.

[12] J. Dean and S. Ghemawat, “MapReduce: Simplified data

processing on large clusters,” in USENIXSymposium on

Operating Systems Design and Implementation, San

Francisco, CA, Dec. 2004, pp. 137–150.

[13] S. Ghemawat, H. Gobioff, and S. Leung, “The Google

File System.” in ACM Symposium on Operating

Systems Principles, Lake George, NY, Oct 2003, pp. 29

– 43.

[14] HADOOP-3759: Provide ability to run memory

intensive jobs without affecting other running tasks on

the nodes.

https://issues.apache.org/jira/browse/HADOOP-3759

[15] VinayakBorkar, Michael J. Carey, Chen Li, Inside “Big

Data Management”:Ogres, Onions, or Parfaits?,

EDBT/ICDT 2012 Joint Conference Berlin,

Germany,2012 ACM 2012, pp 3-14.

[16] GrzegorzMalewicz, Matthew H. Austern, Aart J. C. Bik,

James C.Dehnert, Ilan Horn, NatyLeiser, and

GrzegorzCzajkowski,Pregel: A System for Large-Scale

Graph Processing, SIGMOD‟10, June 6–11, 2010, pp

135-145.

[17] Hadoop,“PoweredbyHadoop,”http://wiki.apache.org/had

oop/PoweredBy.

[18] PIGTutorial,YahooInc.,http://developer.yahoo.com/

hadoop/ tutorial/pigtutorial.html

[19] Apache: Apache Hadoop, http://hadoop.apache.org

[20] Apache Hive, http://hive.apache.org/

[21] Apache Giraph Project, http://giraph.apache.org/

[22] Mahout, http://lucene.apache.org/mahout/

[23] Amazon Simple Storage Service (Amazon S3).

http://aws.amazon.com/s3/

[24] Windows.Azure. Storage .http://www.microsoft.com

/windowsazure/ features /storage/

[25] The Age of Big Data. Steve Lohr. New York Times, Feb

11, 2012. http://www.nytimes.com/2012/02/12/sunday-

review/big-datas-impact-in-the-world.html

[26] Information System & Management, ISM Book, 1st

Edition 2010, EMC2, Wiley Publishing

[27] Dryad - Microsoft Research, http://research.

microsoft.com /en-us/projects/dryad/

[28] IBM-What.is.Jaql, www .ibm.com/ software /data

/infosphere /hadoop/jaql/

Author Profile

Sunil Kumar S. is Asst Proffessor, MITE ,

Moodbidri. He is Publised many papers and research

journals on Wireless sonsor networking and

technologies. Author has completed Diploma, BE and

MTech in Software Engg. From MIT university .

Currently doing research in Big-Data, cloud computing, Hadoop

and grid computing.

Sanjeev G Kanabargi is MTech Student, MITE

Moodbidri. Author has completed his Diploma (CSE),

BE (ISE) and perusing his Mtech in MITE,

moodbidri. He has worked in “Persistent Systems” as

software developer for 2 yrs. Currently working with

research work in Big-Data and Hadoop.

Paper ID: SUB154956 2842

http://developer.yahoo.com/

