
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Optimizing Dynamic Dependence Graph

Toshi Sharma
1
, Madhuri Sharma

2

1, 2Computer Science and Engineering Department, Bharat Institute of Technology, Meerut, India

Abstract: A dynamic dependence graph is one of many techniques to extract a dynamic slice. Dynamic program slicing is very useful in

debugging. This paper discusses about brief comparison of static and dynamic slicing, the dynamic dependence graph and its

optimization algorithm and conclusion.

Keywords: graph, dynamic slicing, program dependence graph, dynamic dependence graph, dependency matrix.

1. Introduction

The original concept of a program slice was introduced by

Weiser [1, 2, 3, 4]. Program slicing is a technique to extract

only those statements from the program, which affect a

chosen set of variable also known as variable of interest

‗VOI‘. Slicing is used to reduce the size of a program by

eliminating the statements that cannot affect the value of

variable of interest. The reduced program is known as slice.

We can also say that program slicing is program

understanding or analysis technique. With the help of slicing

the focus can be made only on a specific sub-component of a

very large program.

Slicing is broadly classified into two categories i.e. static

slicing and dynamic slicing. A static program slice S consists

of all statements in program P that may affect the value of

variable v at some point p [4, 5].The slice is defined for a

slicing criterion C=(x,V), where x is a statement in program P

and V is a subset of variables in P. A static slice, preserves

the program‘s behavior (value of variable v) for all possible

program executions.The exact terminology ―dynamic

program slicing‖ was first introduced by Korel and Laski [7,

8]. Dynamic slicing may very well be regarded as a non-

interactive variation of Balzer‘snotion of flowback analysis

[8].A dynamic slice preserves the program‘s behavior for a

specific program input, rather than for all program inputs

where as a static slice preserves the program‘s behavior for

all the program inputs. This paper presents the difference

between static and dynamic slicing on the basis of statement

coverage, further it explains the program dependence graph

and dependency matrix and dynamic dependence graph along

with its optimized approach.

2. Comparison of Static Slicing and Dynamic

Slicing

begin:

S1: read(X)

S2: if(X<0)

 then

S3: Y:=f1(X);

S4: Z:=g1(X);

 else

S5: if(X=0)

 then

S6: Y:=f2(X);

S7: Z:=g2(X);

 else

S8: Y:=f3(X);

S9: Z:=g3(X);

 end_if;

 end_if;

S10: write(Y);

S11: write(Z);

 End

Figure 1: Example Program 1

In case of static slicing the slice for the slicing criterion

(Y,10) in figure 3 would consists of the statements

{1,2,3,5,6,8}. The total number of statements in the slice is

6. In case of dynamic slicing the slice would be computed on

the basis of input value [3,4,5]. So the slice for the slicing

criterion

(-1,Y,10) would consists of only three statements i.e.

{1,2,3}.

Figure 2: Comparison between static slicing and dynamic

slicing

3. Program Representation

A. Program Dependence Graph

A graph G = (V, E) where V is the set of vertices and E is the

set of edges formed by joining two vertices. A PDG

represents the relationship between various statements of a

program [1,4,6]. The nodes or a vertex in a PDG represents

statements and the edges represent the dependency between

the statements. There are two kinds of dependencies.

 Data Dependency

 Control Dependency

0

2

4

6

8

static dynamic

number of statements covered

number of
statements
covered

Paper ID: SUB1549191 3174

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Data Dependency – An edge from node x to node y means

that the computation at node y depends on the value

computed at node x.

Control Dependency – An edge from node x to node y means

that the computation of node y depends on the Boolean

outcome at node x [6].

In order to plot the graph we need to have knowledge of the

dependency matrices. PDG is the graphical representation of

dependency matrices.

B. Dependency Matrices

The representation of a program in the form of matrix refers

to as dependency matrix. There are separate matrix for

control dependency and data dependency. The values or

numbers in the matrix correspond to the statement number.

With the help of these matrices we can make out a statement

dependency on other statements. For eg. The dependency

matrices for the program in Figure 1 is given below.

Data Dependency Matrix Control Dependency Matrix

data_dependency =

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 3

10 6

10 8

11 4

11 7

11 9

control_dependency =

3 2

4 2

5 2

6 5

7 5

8 5

9 5

Figure 3: Dependency Matrix

The first entry in the data dependency column is 2 1 it means

that statement 2 is data dependent on statement 1. It means

that statement 1 has some value which is used by statement

2. When we plot a graph the data dependency edge is

constructed from 1 to 2.

Similarly by checking out this way we can easily make out

the dependencies. By the help of these dependencies we can

construct a graph. These matrices turn out to be very helpful

when the graph grows huge. A bigger graph becomes very

messy with the large number of edges, thereby making it

really difficult to read the graph.

C. Dynamic Dependence graph

Dynamic dependence graph is modified and optimized

version of the previously created dynamic slicing

approaches. It solves the problem of multiple reaching

definitions of the same variable used by the statement. The

program dependence graph represents only the dependency

of the statements. So in case if we have a program having

multiple reaching definitions of the same variable and we use

program dependence graph to extract a dynamic slice then

the resulting dynamic slice would include those statements

also which have not been executed [1,9]. The drawback of

this approach was that the size of the graph becomes

equivalent to that of the program. For e.g.,

begin

S1: read(N);

S2: I:=1;

S3: while(I<=N)

 do

S4: read(X);

S5: if(X<0)

 then

S6: Y:=f1(X);

 else

S7: Y:=f2(X);

 end_if;

S8: Z:=f3(Y);

S9: write(Z);

S10: I:=I+1;

 end_while;

end

Figure 4: Example Program 3

The program in Fig. 4 is checked for the test case N =3, X=-

4,3,-2. First the execution trace is constructed for the given

test case [9]. The data dependency and control dependency

matrix are constructed for different values of X in different

iterations.

For I=1 is 1,2,3
1
,4

1
,5

1
,6

1
,8

1
,9

1
,10

1

For I=2 is 3
2
, 4

2
, 5

2
, 7

1
, 8

2
, 9

2
, 10

2

For I=3 is 3
3
, 4

3
, 5

3
, 6

2
, 8

3
, 9

3
, 10

3
and 3

4

X=-4 X=3 X=-2

3 1

3 2

5 4

6 4

8 6

9 8

10 2

3 1

 3 10

7 4

8 7

9 8

10 10

3 1

3 10

5 4

6 4

8 6

9 8

10 10

Figure 5: Data Dependency Matrix for the program in figure

4 for the test case N=3 and X=-4,3,-2

X=-4 X=3 X=-2

 4 3

5 3

6 5

8 3

9 3

10 3

 7 5

 8 3

 9 3

10 3

 5 3

 6 5

 8 3

 9 3

10 3

Figure 6: Control Dependency Matrix for the program Fig.4

in for the test case N=3 and X=-4,3,-2

4. Proposed Work

Software is often modified to reflect new functionality, with

the changes of its specification. In the modification, several

bugs are usually injected and so debugging is an important

task in software evolution. Program slicing and specifically

Paper ID: SUB1549191 3175

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

dynamic program slicing is highly efficient in debugging.

Dynamic Dependence Graph is a approach to find the

dynamic slice. But the issue with dynamic dependence graph

is that it gets very complex in case of bigger program . So in

order to make the task of finding the faults easier, my thesis

work focuses on lowering the number of nodes in dynamic

dependence graph for program slicing i.e. optimizing the

dynamic dependence graph.

The algorithm for an optimized dependence graph is as

follows;

1. Taking the program as an input.

2. Input the slicing criterion i.e. <input (t), occurrence of

statement (l), variable of interest (v)>.

3. Executing the input program against the given test case.

4. Find the trace of the program according to the test case.

5. Draw the dependency matrices of each iteration of the

loop.

 Construct the matrix for the first iteration including all the

data dependency and control dependency.

 Construct the matrix for the second iteration If the

statement in inside if else condition has been included in

the matrix for the previous iteration, then do not include

that statement again in the matrix of other iteration

6. Repeat the above steps till the program terminates

7. Now construct the graph of the matrix

8. Construct a node for each statement labelling them with

their respective statement numbers.

9. Draw the edges between the nodes with the help of

matrices.

10. Once the graph is constructed we can find out the

dynamic slice with respect to a variable, var by first

finding out the last definition of variable ‗v‘ and finding

all the reachable statements

A. Implementation of the proposed work

For the program in figure 5 we are going to find an

optimized version of the dynamic dependence graph using

the proposed approach

X=-4 X=3 X=-2

 3 1

 3 2

 5 4

 6 4

 8 6

 9 8

 10 2

3 1

 3 10

 7 4

 8 7

 9 8

 10 10

 3 1

 3 10

 9 8

 10 10

Figure 7: Data Dependency Matrix for the program in Fig. 4

for the test case N=3 and X=-4,3,-2

X=-4 X=3 X=-2

4 3

5 3

6 5

8 3

9 3

10 3

7 5

 8 3

 9 3

10 3

 9 3

 10 3

Figure 8: Control Dependency Matrix for the program in

Fig. 4 for the test case N=3 and X=-4,3,-2

Now, compare the column X=-2 in figure 5 and 7 we can see

that the matrix in figure 7 is smaller than in figure 5. This is

because we have omitted those dependencies inside the loop

which have already been included in previous iterations.

Similarly the control dependency has been constructed.

5. Conclusions

The dynamic dependence graph has been optimized and this

method can be used to develop a tool for slicing. Dynamic

slicing is an important concept and it finds its application in

areas like debugging [15, 24], testing [10,11,12,13,14],

reverse engineering [15,16], software maintenance

[16,17,18,19], program integration [20, 21]and software

metrics [34,35].

The concept explained in proposed work can be used to

develop a tool. Tool for dynamic slicing of java programs

can be developed as most of the programming for software is

done using java. The tool would provide a lot of help in

debugging and testing.

References

[1] Frank Tip,A Survey of Program Slicing Techniques

[2] M. Weiser. Programmers use slices when debugging.

Communications of the ACM, 25(7):446–452, 1982.

[3] M. Weiser. Program slicing. IEEE Transactions on

Software Engineering, 10(4):352–357, 1984.

[4] K.J. Ottenstein and L.M. Ottenstein. The program

dependence graph in a software development

environment. InProceedings of the ACM

SIGSOFT/SIGPLAN Software Engineering Symposium

on Practical Software Development Environments,

pages 177–184, 1984. SIGPLAN Notices 19(5).

[5] D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, and M.

Wolfe. Dependence graphs and compiler

optimizations.In Conference Record of the Eighth

ACMSymposium on Principles of Programming

Languages, pages 207–218,1981.

[6] J. Ferrante, K.J. Ottenstein, and J.D. Warren. The

program dependence graph and its use in optimization.

ACM Transactions on Programming Languages and

Systems, 9(3):319–349, 1987.

[7] B. Korel and J. Laski. Dynamic slicing of computer

programs. Journal of Systems and Software, 13:187–

195,1990.

[8] B. Korel and J. Laski. Dynamic program slicing.

Information Processing Letters, 29(3):155–163, 1988

[9] Hiralal Agarwal and Joseph R.Horgan , ―Dynamic

Program Slicing, ‖ ACM SIGPALN‘90 Conference on

Program Slicing Design and Implementation, White

Plains, New York, June 20- 22 ,1990.

[10] D.W. Binkley, The application of program slicing to

regression testing, in: M. Harman, K. Gallagher (Eds.),

Information and SoftwareTechnology Special Issue on

Program Slicing, Vol. 40, Elsevier, Amsterdam, 1998,

pp. 583–594.

[11] R. Gupta, M.J. Harrold, M.L. Soffa, An approach to

regression testing using slicing, in: Proc. IEEE Conf. on

Software Maintenance, IEEE Computer Society Press,

Los

Paper ID: SUB1549191 3176

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[12] R.M. Hierons, M. Harman, C. Fox, L. Ouarbya, M.

Daoudi, Conditioned slicing supports partition testing,

Software Testing, Verification Reliability 12 (2002) 23–

28. Alamitos, CA, USA, Orlando, FL, USA, 1992, pp.

299–308.

[13] M. Harman, S. Danicic, Using program slicing to

simplify testing, Software Testing, Verification

Reliability 5 (3) (1995) 143–162.

[14] R.M. Hierons, M. Harman, S. Danicic, Using program

slicing to assist in the detection of equivalent mutants,

Software Testing, Verification Reliability 9 (4) (1999)

233–262.

[15] H. Agrawal, R.A. DeMillo, E.H. Spafford, Debugging

with dynamic slicing and backtracking, Software

Practice Experience 23 (6) (1993) 589–616.

[16] G. Canfora, A. Cimitile, M. Munro, RE2: reverse

engineering and reuse re-engineering, J. Software

Maintenance: Res. Practice 6 (2) (1994) 53–72.

[17] D. Simpson, S.H. Valentine, R. Mitchell, L. Liu, R.

Ellis, Recoup—maintaining Fortran, ACM Fortran

Forum 12 (3) (1993) 26–32.

[18] G. Canfora, A. Cimitile, A. De Lucia, G.A.D. Lucca,

Software salvaging based on conditions, in: Internat.

Conf. on Software Maintenance(ICSM‘96), IEEE

Computer Society Press, Los Alamitos, CA, USA,

Victoria, Canada, 1994, pp. 424–433.

[19] A. Cimitile, A. De Lucia, M. Munro, A specification

driven slicing process for identifying reusable functions,

Software Maintenance: Res.Practice 8 (1996) 145–178.

[20] S. Horwitz, J. Prins, T. Reps, Integrating non-interfering

versions of programs, ACM Trans. Programming

Languages Systems 11 (3) (1989)345–387.

[21] D.W. Binkley, S. Horwitz, T. Reps, Program integration

for languages with procedure calls, ACM Trans.

Software Eng. Methodology 4 (1)(1995) 3–35.

[22] J.M. Bieman, L.M. Ott, Measuring functional cohesion,

IEEE Trans. Software Eng. 20 (8) (1994) 644–657.

[23] A. Lakhotia, Rule-based approach to computing module

cohesion, in: Proc. 15th Conf. on Software Engineering

(ICSE-15), 1993, pp. 34–44.

[24] J.R. Lyle, M. Weiser, Automatic program bug location

by program slicing, in: Second Internat. Conf. on

Computers and Applications, IEEEComputer Society

Press, Los Alamitos, CA, USA, Peking, 1987, pp. 877–

882

Paper ID: SUB1549191 3177

