
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Fully Pipelined High Throughput Cost Effective

FPGA Based Implementation of AES Algorithm

Athira Das A J
1
, Ajith Kumar B P

2

1Student, Dept. of Electronics and Communication, Karavali Institute of Technology, Neermarga, Mangalore, Karnataka

2Assistant Professor, Dept. of Electronics and Communication, Karavali Institute of Technology,

Neermarga, Mangalore, Karnataka

Abstract: This proposes a fully pipelined high-throughput cost effective implementation of Advanced Encryption Standard (AES)

supporting encryption and decryption with 128-, 192-, and 256-bit cipher key. AES is the most secure symmetric encryption technique

that used for wireless communication. The AES based on the Rijndael Algorithm is an efficient cryptographic technique that includes

generation of ciphers for encryption and inverse ciphers for decryption. A high speed security algorithm is always necessary and

important for wired/wireless communication. The symmetric block cipher key plays a major role in the bulk data encryption. One of the

best existing symmetric security algorithms to provide data security is advanced encryption standard (AES). FPGA-based

implementation of the Advanced Encryption Standard (AES) algorithm is presented in this paper. The design has been coded by Very

high speed integrated circuit Hardware Descriptive Language. All the results are synthesized and simulated using Xilinx ISE and

ModelSim software respectively. This implementation is compared with other works to show the efficiency. The design uses an iterative

looping approach with block of 128 bits, lookup table implementation of S-box. This gives low complexity architecture and easily

achieves low latency as well as high throughput.

Keywords: Encryption, Decryption, Rijndael, AES, VLSI

1. Introduction

Cryptography is playing an important role in the security of

data transmission with the rapid growing number of Internet

and wireless communication users. It enables us to store

sensitive information or transmit it across insecure networks

so that unauthorized persons cannot read it. The urgency for

secure exchange of digital data resulted in large quantities of

different encryption algorithms which can be classified into

two groups: asymmetric encryption algorithms (with public

key algorithms) and symmetric encryption algorithms (with

private key algorithms). Symmetric key algorithms are in

general much faster to execute electronically than asymmetric

key algorithms.

In cryptography, the AES, also known as Rijndael, is a block

cipher adopted as an encryption standard by the US

government, which specifies an encryption algorithm capable

of protecting sensitive information. AES algorithm is a

symmetric block cipher that can encrypt (encipher) and

decrypt (decipher) information. Encryption converts data to

an unintelligible form called cipher-text. Decryption of the

cipher-text converts the data back into its original form,

which is called plaintext. The AES algorithm is capable of

using cryptographic keys of 128, 192, and 256 bits to encrypt

and decrypt data in blocks of 128 bits.

 To achieve a high throughput up to tens of Gbps,

pipelining, sub-pipelining and loop-unrolling

architectures have been explored.

 This project adopts iterative architecture to achieve small

area, but the structure can be applied to pipelining and

sub-pipelining easily to get a higher throughput for no

LUTs or memory are used so that no unbreakable delay

is introduced in the architecture.

 Composite field arithmetic has been employed in

SubBytes and InvSubBytes to reduce the area

requirement, and presented 16 ways to construct the

composite field GF ((((2)
2
)

2
)

2
) from 16 sets of different

irreducible polynomial coefficients.

 MixColumn/InvMixColumn operations are also

optimized. This got a smaller area of 672 XOR gates and

8 XOR gates in the critical path by applying serial

InvMixcolumn decomposition.

 This paper uses an architecture that supports three kinds

of keys and both encryption and decryption can be

handled, which can generate a 128-bit key in one cycle.

 The hardware implementation of the Rijndael algorithm

can provide high performance and low cost for specific

applications. At backbone communication channels or

heavily loaded servers it is not possible to lose processing

speed, which drops the efficiency of the overall system

while running cryptography algorithms in software.

2. System Architecture

2.1 Architecture Overview

The AES algorithm is also known as the Rijndael algorithm

which is a symmetric block cipher that processes data blocks

of 128 bits using the cipher key of length 128, 192, or 256

bits. Each data block consists of a 4×4 array of bytes called

the State, on which the basic operations of the AES algorithm

are performed.

Paper ID: SUB154887 2914

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Structure of AES Algorithm

After an initial round key addition, a round function

consisting of four different transformations—SubBytes(),

ShiftRows(), MixColumns() and AddRoundKey() is applied

to the data block, i.e., the State array.

2.2 Glossary of Terms and Acronyms

Cipher: Series of transformations that converts plaintext to

cipher text using the Cipher Key.

Cipher Key: Secret, cryptographic key that is used by the

Key Expansion routine to generate a set of Round Keys; can

be pictured as a rectangular array of bytes, having four rows

and Nk columns.

Cipher text: Data output from the Cipher or input to the

Inverse Cipher.

Inverse Cipher: Series of transformations that converts

cipher text to plaintext using the Cipher Key.

Key Expansion: Routine used to generate a series of Round

Keys from the Cipher Key.

Plain text: Data input to the Cipher or output from the

Inverse Cipher.

Rijndael: Cryptographic algorithm specified in this

Advanced Encryption Standard (AES).

Round Key: Round keys are values derived from the Cipher

Key using the Key Expansion routine; they are applied to the

State in the Cipher and Inverse Cipher.

State: Intermediate Cipher result that can be pictured as a

rectangular array of bytes, having four rows and Nb columns.

S-box: Non-linear substitution table used in several byte

substitution transformations and in the Key Expansion

routine to perform a one for one substitution of a byte value.

Word: A group of 32 bits that is treated either as a single

entity or as an array of 4 bytes.

2.3 Architecture of AES

AES operates on a 4×4 array of bytes, termed the state

(versions of Rijndael with a larger block size have additional

columns state). For encryption, each round of AES consists

of four stages;

A. AddRoundKey –Key Expansion(Rijndael key)

B. SubBytes

C. ShiftRows

D. MixColumns

The final round replaces the MixColumns stage with another

instance of AddRoundKey. The round function is performed

iteratively for 10, 12, or 14 times, depending on the key

length. In the last round, MixColumns() does not applied.

The four transformations are described briefly as follows;

1. SubBytes(): a non-linear byte substitution that operates

independently on each byte of the State using a

substitution table (called the S-box).

2. ShiftRows(): a circular shifting operation on the rows of

the State with different numbers of bytes (offsets).

3. MixColumns(): the operation that mixes the bytes in each

column by the multiplication of the State with a fixed

polynomial modulo x
4
 + 1.

4. AddRoundKey(): an XOR operation that adds a round

key to the State in each iteration, where the round keys

are generated during the key expansion phase.

Figure 2: AES Encryption architecture

Figure 3: AES Decryption Architecture

Paper ID: SUB154887 2915

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Equivalent decryption procedure rearranges the order so that

the order of transformations in the decryption procedure

keeps consistent with that in the encryption procedure. Thus,

resource sharing will be enabled. However, in the decryption

procedure, the modified round keys should be applied to the

original generated roundkeys using InvMixColumn

transformation. Fig.2 and 3 shows the architecture adopted in

this project. SubBytes and InvSubBytes transformations are

merged using composite field arithmetic. ShiftRows and

InvShiftRows are simple shifting transformations.

MixColumn and InvMixColumn transformations are

optimized and merged.

In the decryption procedure the round key is added to the

state first and then the result is applied with the

InvMixColumn transformation. In this way modified

roundkeys mentioned above can share with the state using

just one InvMixColumn. The SubBytes() (S-box)

transformation, which consists of a multiplicative inversion

over GF(2
8
) and an affine transform, is the most critical part

in the AES algorithm, so far as computational complexity is

concerned.

The S-box operation is required both for the encryption and

key expansion. The S-box dominates the hardware

complexity of the AES circuit. Conventionally, the

coefficients of the S-box and inverse S-box are stored in

LUTs or a hard-wired multiplicative inverter over GF(2
8
) can

be used, together with the affine transform function. The

dedicated inverter, however, has a high area overhead.

The Sub Bytes transformation consists of two steps: compute

the multiplicative inverse of each byte in GF(2
8
) and then

apply an affine transformation. Denoting each byte by S, S is

an element of the Galois field GF(2
8
) and the Sub Bytes can

be described by

S'=MS-1+c (1)

where M is an 8X8 matrix and C is an 8-bit vector. In

traditional look up table (LUT) approaches, the unbreakable

delay is longer than the total delay of the rest of operations in

each round. Speed up by pipelining and sub pipelining will

be unachievable for this feature. Furthermore, the LUT

approach is not suitable for resource constrained use for it

costs a large area. Composite field arithmetic has been

introduced to solve the problem. The multiplicative inverse

in GF(2
8
) is very complicated by direct computation.

However, two fields of the same order are isomorphic. This

gives us the possibility to use an isomorphic transform to

convert

GF(2) = GF(2
2
): Po(x)=x

2
+x+1

GF(2
2
) = GF((2

2
)

2
): P1(x)= x

2
+x+ ɸ, ɸ ε GF(2

2
)

GF((2
2
)

2
) =GF(((2

2
)

2
)

2
): P2(x) =x

2
+x+λ , λ ε GF((2

2
)

2
)

Where the values of ɸ and λ satisfy P1(x) and P2(x) are

irreducible over GF(2
2
) and GF((2

2
)

2
) respectively.

There are two options for ɸ and for each t ɸ there are 8

options for λ to satisfy the requirement above. Different

polynomial coefficients will severely affect the complexities

of operations in the field. Furthermore, for a fixed set of

polynomial coefficients, there exist 8 isomorphic mappings.

Thus, polynomial coefficients and isomorphic mappings

should all be taken into consideration to minimize the gate

count and short path. The isomorphic mappings that convert

between GF(2
8
) and GF(((2

2
)

2
)

2
) can be merged into one 16

X 8 matrix instead of traditional two 8 X 8 matrices. This

gives us more freedom to use substructure sharing and can

get smaller area.

Optimal irreducible polynomial coefficients and isomorphic

mappings are selected using standard and normal bases

respectively. A 16X 8 matrix is used instead of two 8 X 8

matrices as in previous work to obtain more freedom to use

substructure sharing.

The MixColumn transformation operates on the four bytes of

each column of the state matrix. The columns are considered

as polynomials over GF(2
8
) and multiplied modulo X

4
 + 1

with a fixed polynomial a(x), given by (3)

a(x)={03}16X
3
+{0l}16x

2
+{0l}16X+{02}16 (3)

In the InvMixColumn transformation the fixed polynomial

a
-1

(x) is given by

a
-1

(x)={0b}16X
3
+{0d}16X

2
+{09}16X+{0e}16 (4)

To minimize gate count and consider that the complexity of

InvMixColumn is higher than that of MixColumn, the

InvMixColumn transformation can be decomposed to share

resource with MixColumn. The polynomial a
-1

(x) can be

decomposed as in (5)

a
-1

(x)=a
3
(x)=a(x)·d(x) (5)

d(x)=a
2
(x)={04}16X

2
+{05}16={04}16(X

2
+1)+{0l}16

The on-the-fly key expansion can generate a round key per

clock without additional memory to store the keys. AES with

128-, 192- and 256-bit key can all be handled, and both

encryption and decryption are supported. To cooperate with

the AES architecture, one 128-bit round key should be

generated in each clock. According to AES key expansion

algorithm, we can get a 192- or 256-bit round key per clock,

however, it is incompatible with the width of AES data block.

A data shuffling multiplexer is introduced to rearrange the

round key to generate the next round key. The control signal

sel0,….. ,sel6 is produced using a finite state machine

(FSM).

3. Project Objectives

The main objectives of the proposed system are,

 To implement AES algorithm supporting both encryption

and decryption.

 Doing encryption and decryption using three different

cipher keys (128-, 192,256-bit).

 Implementation with minimum gate count in Sub

Bytes/InvSub Bytes with the help of the optimum

irreducible polynomial coefficients.

 To improve throughput by applying a novel on-the-fly

key expansion structure.

 Obtain a cost effective implementation of AES with

enough security.

Paper ID: SUB154887 2916

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4. Project Scope

 For security and fast transmission of data over an insecure

path, cryptographic method can be used. Here AES

implementation gives an efficient architecture with

shorter critical path and smaller area. The AES algorithm

has broad applications, including smartcard, cellular

phone, WWW servers, automated teller machine (ATMs)

and digital video recorders.

 Compared to the software implementation, hardware

implementations of the AES algorithm more physical

security as well as higher speed. There are a number of

areas seeking even lower area designs for block cipher

such as the AES in consumer electronics, for example

mobile communications, which require modest data rates

of the order of 1 Mbps.

 A low cost and small design of AES algorithm can be

used in smart card applications, which allow a wide range

of equipment to operate securely.

5. Result analysis

The simulation results are carried out for fully pipelined AES

to show the efficiency and throughput. Result synthesized

and simulated using Xilinx ISE8.2i and ModelSim6.3f

software’s. Efficiency and throughput of fully pipelined

architecture is given in below table.

Table 1: Execution time and Throughput

Function
Average Execution

Time (µs)

Throughput

(Mbit/s)

Key Expansion Cipher 4.71 27.18

Cipher 16.50 7.76

Inverse Cipher 20.56 6.23

Figure 4: Encryption of 128 AES key

Figure 5: Decryption of 128 AES key

Figure 6: Encryption of 192 AES key

Figure7: Decryption of 192 AES key

Figure 8: Encryption of 256 AES key

Paper ID: SUB154887 2917

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 9: Decryption of 256 AES key

6. Future Scope

In this project, there are 16 ways to construct the composite

field GF from 16 sets of different irreducible polynomials

with standard and normal bases. If we can make availability

of these polynomial more and differently, we can reduce the

area further. This architecture can easily applied using

pipelining or sub pipelining to get higher throughput. If we

can optimize the architecture of on-the-fly key with three

different keys and both encryption and decryption can

handled, which can generate more than a 128-bit key in one

cycle.

7. Conclusion

The proposed design is an implementation with a high

throughput per kilo gates parameter which can perform

encryption and decryption and support all the key sizes. A

new architecture is proposed that only one

MixColumn/InvMixColumn copy is used instead of two

copies in prior works. The SubBytes is smaller than prior

works. Here get a smallest MixColumn/InvMixColumn as

already know. Furthermore, the architecture can be easily

applied using pipelining or sub pipelining to get higher

throughput. The design is quite efficient for it has the highest

parameter throughput per kilo gate count as know with the

same process.

References

[1] Advanced Encryption Standard (AES), FIPS PUB 197,

Nov. 26, 2001, Federal Information Processing

Standards publication 197.

[2] X. Zhang , K. K. Parhi, "High-speed VLSI architectures

for the AES algorithm", IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, v.12 n.9,

p.957-967, September 2004.

[3] X. Zhang, K. K. Parhi, "On the Optimum Constructions

of composite field for the AES Algorithm", IEEE

Transactions on Circuits. & Systems-II, Vo1.53, No.10,

Oct.2006.

[4] D. Canright, "A very compact S-box for AES," in Proc.

Cryptographic Hardware and Embedded Syst.,

Edinburgh, U.K., Sep. 2005, pp. 441455.

[5] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, "A

compact Rijndael hardware architecture with S-box

optimization," in Proc. ASIACRYPT, Gold Coast,

Australia, Dec. 2000, pp. 239-254.

[6] Y. Huang, Y. Lin, K. Hung and K. Lin, "Efficient

Implementation of AES IP," Circuits and Systems2006,

APCCAS IEEE Conference, pp. 1418-1421,2006.

[7] M. Alam, S. Ray, D. Mukhopadhyay, S. Ghosh, D.

Roychowdhury and I. Sengupta: "An Area Optimized

Reconfigurable Encryptor for AES Rijndael", in the

proceeding of Design, Automation and Test in Europe

(DATE 2007), pp.1116-1121, April 16-21, Nice, France.

[8] N.Mentens, L.Batina, B.Preneel, I.Verbauwhede. "A

systematic evaluation of compact hardware

implementations for the Rijndael Sbox", in CT-RSA

2005, LNCS 3376, pp. 323-333, 2005.

[9] J.Wolkerstorfer, E.Oswald, M.Lamberger. "An ASIC

Implementation of the AES SBoxes", Proceedings of the

The Cryptographer's Track at the RSA Conference on

Topics in Cryptology, p.67-78, February 18-22, 2002.

[10] I. Verbauwhede, P. Schaumont, and H. Kuo, "Design

and Performance Testing of a 2.29 Gb/s Rijndael

Processor," IEEE 1. Solid-State Circuits (JSSC), Mar.

2003.

[11] H. Kuo, and I. Verbauwhede."Architecture optimization

for a 1.82Gbit/s VLSI implementation of the AES

Rijndael algorithm".Proc. 3
rd

 Int.CHES 2001, May 2001,

pp. 51 64.

[12] H. Shim, D. W. Kim, Y. K. Kang, T. W. Kwon, 1. R..

Choi, "A Rijndael crypto processor using shared on-the-

fly key scheduler", IEEE Asia-Pacific Conference on

ASIC, pp. 89-92, Aug. 6-8,2002.

[13] Kenneth Stevens, Otmane Ait Mohamed, ―Single-chip

FPGA Implementation of a Pipelined, Memory-Based

AES Rijndael Encryption Design‖, IEEE ECE2005,pp.

1296-1299 Paper.

[14] X. Zhang and K. K. Parhi, ―Implementation approaches

for the advanced encryption standard algorithm,‖ IEEE

Circuits Syst. Mag., vol. 2, no. 4, pp. 24–46, 2002.

[15] A. Aziz and N. Ikram, ―Memory efficient

implementation of AES S-boxes on FPGA‖, Journal of

Circuits, Systems, and Computers, Vol. 16, No. 4, pp.

603-611, 2007.

Paper ID: SUB154887 2918

