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Abstract: This   proposes a fully pipelined high-throughput cost effective implementation of Advanced Encryption Standard (AES) 

supporting encryption and decryption with 128-, 192-, and 256-bit cipher key. AES is the most secure symmetric encryption technique 

that used for wireless communication. The AES based on the Rijndael Algorithm is an efficient cryptographic technique that includes 

generation of ciphers for encryption and inverse ciphers for decryption. A high speed security algorithm is always necessary and 

important for wired/wireless communication. The symmetric block cipher key plays a major role in the bulk data encryption. One of the 

best existing symmetric security algorithms to provide data security is advanced encryption standard (AES). FPGA-based 

implementation of the Advanced Encryption Standard (AES) algorithm is presented in this paper. The design has been coded by Very 

high speed integrated circuit Hardware Descriptive Language. All the results are synthesized and simulated using Xilinx ISE and 

ModelSim software respectively. This implementation is compared with other works to show the efficiency. The design uses an iterative 

looping approach with block of 128 bits, lookup table implementation of S-box. This gives low complexity architecture and easily 

achieves low latency as well as high throughput.  

 

Keywords: Encryption, Decryption, Rijndael, AES, VLSI 

 

1. Introduction 
 

Cryptography is playing an important role in the security of 

data transmission with the rapid growing number of Internet 

and wireless communication users. It enables us to store 

sensitive information or transmit it across insecure networks 

so that unauthorized persons cannot read  it. The urgency for 

secure exchange of digital data resulted in large quantities of 

different encryption algorithms which can be classified into 

two groups: asymmetric encryption algorithms (with public 

key algorithms) and symmetric encryption algorithms (with 

private key algorithms). Symmetric key algorithms are in 

general much faster to execute electronically than asymmetric 

key algorithms. 

 

In cryptography, the AES, also known as Rijndael, is a block 

cipher adopted as an encryption standard by the US 

government, which specifies an encryption algorithm capable 

of protecting sensitive information. AES algorithm is a 

symmetric block cipher that can encrypt (encipher) and 

decrypt (decipher) information. Encryption converts data to 

an unintelligible form called cipher-text. Decryption of the 

cipher-text converts the data back into its original form, 

which is called plaintext. The AES algorithm is capable of 

using cryptographic keys of 128, 192, and 256 bits to encrypt 

and decrypt data in blocks of 128 bits. 

 To achieve a high throughput up to tens of Gbps, 

pipelining, sub-pipelining and loop-unrolling 

architectures have been explored.  

 This project adopts iterative architecture to achieve small 

area, but the structure can be applied to pipelining and 

sub-pipelining easily to get a higher throughput for no 

LUTs or memory are used so that  no unbreakable delay 

is introduced in the architecture. 

 Composite field arithmetic has been employed in 

SubBytes and InvSubBytes to reduce the area 

requirement, and presented 16 ways to construct the 

composite field   GF ((((2)
2
)

2
)

2
) from 16 sets of different 

irreducible polynomial coefficients. 

 MixColumn/InvMixColumn operations are also 

optimized.  This got a smaller area of 672 XOR gates and 

8 XOR gates in the critical path by applying serial 

InvMixcolumn decomposition. 

 This paper uses an architecture that supports three kinds 

of keys and both encryption and decryption can be 

handled, which can generate a 128-bit key in one cycle. 

 The hardware implementation of the Rijndael algorithm 

can provide high performance and low cost for specific 

applications. At backbone communication channels or 

heavily loaded servers it is not possible to lose processing 

speed, which drops the efficiency of the overall system 

while running cryptography algorithms in software. 

 

2. System Architecture 
 

2.1 Architecture Overview 

 

The AES algorithm is also known as the Rijndael algorithm  

which is a symmetric block cipher that processes data blocks 

of 128 bits using the cipher key of length 128, 192, or 256 

bits. Each data block consists of a 4×4 array of bytes called 

the State, on which the basic operations of the AES algorithm 

are performed. 
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Figure 1: Structure of AES Algorithm 

 

After an initial round key addition, a round function 

consisting of four different transformations—SubBytes(), 

ShiftRows(), MixColumns() and AddRoundKey() is applied 

to the data block, i.e., the State array. 

 

2.2 Glossary of Terms and Acronyms 

 

Cipher:  Series of transformations that converts plaintext to 

cipher text using the Cipher Key. 

 

Cipher Key: Secret, cryptographic key that is used by the 

Key Expansion routine to generate a set of Round Keys; can 

be pictured as a rectangular array of bytes, having four rows 

and Nk columns. 

 

Cipher text: Data output from the Cipher or input to the 

Inverse Cipher. 

 

Inverse Cipher: Series of transformations that converts 

cipher text to plaintext using the Cipher Key. 

 

Key Expansion:  Routine used to generate a series of Round 

Keys from the Cipher Key. 

 

Plain text: Data input to the Cipher or output from the 

Inverse Cipher. 

 

Rijndael: Cryptographic algorithm specified in this 

Advanced Encryption Standard (AES). 

 

Round Key:  Round keys are values derived from the Cipher 

Key using the Key Expansion routine; they are applied to the 

State in the Cipher and Inverse Cipher. 

 

State: Intermediate Cipher result that can be pictured as a 

rectangular array of bytes, having four rows and Nb columns. 

 

S-box:  Non-linear substitution table used in several byte 

substitution transformations and in the Key Expansion 

routine to perform a one for one substitution of a byte value. 

 

Word: A group of 32 bits that is treated either as a single 

entity or as an array of 4 bytes. 

 

2.3 Architecture of AES 

 

AES operates on a 4×4 array of bytes, termed the state 

(versions of Rijndael with a larger block size have additional 

columns state). For encryption, each round of AES consists 

of four stages; 

A. AddRoundKey –Key Expansion(Rijndael key) 

B. SubBytes 

C. ShiftRows 

D. MixColumns 

 

The final round replaces the MixColumns stage with another 

instance of AddRoundKey. The round function is performed 

iteratively for 10, 12, or 14 times, depending on the key 

length. In the last round, MixColumns() does not applied. 

The four transformations are described briefly as follows; 

 

1. SubBytes(): a non-linear byte substitution that operates 

independently on each byte of the State using a 

substitution table (called the S-box). 

2. ShiftRows(): a circular shifting operation on the rows of 

the State with different numbers of bytes (offsets). 

3. MixColumns(): the operation that mixes the bytes in each 

column by the multiplication of the State with a fixed 

polynomial modulo x
4
 + 1. 

4. AddRoundKey(): an XOR operation that adds a round 

key to the State in each iteration, where the round keys 

are generated during the key expansion phase. 

 

 
Figure 2: AES Encryption architecture 

 
Figure 3: AES Decryption Architecture  
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Equivalent decryption procedure rearranges the order so that 

the order of transformations in the decryption procedure 

keeps consistent with that in the encryption procedure. Thus, 

resource sharing will be enabled. However, in the decryption 

procedure, the modified round keys should be applied to the 

original generated roundkeys using InvMixColumn 

transformation. Fig.2 and 3 shows the architecture adopted in 

this project. SubBytes and InvSubBytes transformations are 

merged using composite field arithmetic. ShiftRows and 

InvShiftRows are simple shifting transformations. 

MixColumn and InvMixColumn transformations are 

optimized and merged. 

 

In the decryption procedure the round key is added to the 

state first and then the result is applied with the 

InvMixColumn transformation. In this way modified 

roundkeys mentioned above can share with the state using 

just one InvMixColumn. The SubBytes() (S-box) 

transformation, which consists of a multiplicative inversion  

over GF(2
8
) and an affine transform, is the most critical part 

in the AES algorithm, so far as computational complexity is 

concerned. 

 

The S-box operation is required both for the encryption and 

key expansion. The S-box dominates the hardware 

complexity of the AES circuit. Conventionally, the 

coefficients of the S-box and inverse S-box are stored in 

LUTs or a hard-wired multiplicative inverter over GF(2
8
) can 

be used, together with the affine transform function. The 

dedicated inverter, however, has a high area overhead.   

 

The Sub Bytes transformation consists of two steps: compute 

the multiplicative inverse of each byte in GF(2
8
) and then 

apply an affine transformation. Denoting each byte by S, S is 

an element of the Galois field GF(2
8
) and the Sub Bytes can 

be described by 

 

S'=MS-1+c                                      (1)  

 

where M is an 8X8 matrix and C is an 8-bit vector. In 

traditional look up table (LUT) approaches, the unbreakable 

delay is longer than the total delay of the rest of operations in 

each round. Speed up by pipelining and sub pipelining will 

be unachievable for this feature. Furthermore, the LUT 

approach is not suitable for resource constrained use for it 

costs a large area. Composite field arithmetic has been 

introduced to solve the problem. The multiplicative inverse 

in GF(2
8
) is very complicated by direct computation. 

However, two fields of the same order are isomorphic. This 

gives us the possibility to use an isomorphic transform to 

convert  

GF(2) = GF(2
2
): Po(x)=x

2
+x+1 

GF(2
2
) = GF((2

2
)

2
): P1(x)= x

2
+x+ ɸ, ɸ ε GF(2

2
) 

GF((2
2
)

2
) =GF(((2

2
)

2
)

2
): P2(x) =x

2
+x+λ , λ ε GF((2

2
)

2
) 

 

Where the values of ɸ and λ satisfy P1(x) and P2(x) are 

irreducible over GF(2
2
) and GF((2

2
)

2
) respectively. 

 

There are two options for ɸ and for each t ɸ there are 8 

options for λ to satisfy the requirement above. Different 

polynomial coefficients will severely affect the complexities 

of operations in the field. Furthermore, for a fixed set of 

polynomial coefficients, there exist 8 isomorphic mappings. 

Thus, polynomial coefficients and isomorphic mappings 

should all be taken into consideration to minimize the gate 

count and short path. The isomorphic mappings that convert 

between GF(2
8
) and GF(((2

2
)

2
)

2
) can be merged into one  16 

X 8 matrix instead of traditional two 8 X 8 matrices. This 

gives us more freedom to use substructure sharing and can 

get smaller area. 

 

Optimal irreducible polynomial coefficients and isomorphic 

mappings are selected using standard and normal bases 

respectively. A 16X 8 matrix is used instead of two 8 X 8 

matrices as in previous work to obtain more freedom to use 

substructure sharing. 

 

The MixColumn transformation operates on the four bytes of 

each column of the state matrix. The columns are considered 

as polynomials over GF(2
8
) and multiplied modulo X

4
 + 1 

with a fixed polynomial a(x), given by (3) 

a(x)={03}16X
3
+{0l}16x

2
+{0l}16X+{02}16     (3) 

 

In the InvMixColumn transformation the fixed polynomial 

a
-1

(x) is given by  

a
-1

(x)={0b}16X
3
+{0d}16X

2
+{09}16X+{0e}16      (4) 

  

To minimize gate count and consider that the complexity of 

InvMixColumn is higher than that of MixColumn, the 

InvMixColumn transformation can be decomposed to share 

resource with MixColumn. The polynomial a
-1

(x) can be 

decomposed as in (5) 

a
-1

(x)=a
3
(x)=a(x)·d(x)       (5) 

d(x)=a
2
(x)={04}16X

2
+{05}16={04}16(X

2
+1)+{0l}16 

 

The on-the-fly key expansion can generate a round key per 

clock without additional memory to store the keys. AES with 

128-, 192- and 256-bit key can all be handled, and both 

encryption and decryption are supported. To cooperate with 

the AES architecture, one 128-bit round key should be 

generated in each clock. According to AES key expansion 

algorithm, we can get a 192- or 256-bit round key per clock, 

however, it is incompatible with the width of AES data block. 

A data shuffling multiplexer is introduced to rearrange the 

round key to generate the next round key. The control signal 

sel0,….. ,sel6 is produced using a finite state machine 

(FSM). 

 

3. Project Objectives 
 

The main objectives of the proposed system are, 

 To implement AES algorithm supporting both encryption 

and decryption. 

 Doing encryption and decryption using three different 

cipher keys (128-, 192,256-bit). 

 Implementation with minimum gate count in Sub 

Bytes/InvSub Bytes with the help of the optimum 

irreducible polynomial coefficients. 

 To improve throughput by applying a novel on-the-fly 

key expansion structure. 

 Obtain a cost effective implementation of AES with 

enough security. 
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4. Project Scope 
 

 For security and fast transmission of data over an insecure 

path, cryptographic method can be used. Here AES 

implementation gives an efficient architecture with 

shorter critical path and smaller area. The AES algorithm 

has broad applications, including smartcard, cellular 

phone, WWW servers, automated teller machine (ATMs) 

and digital video recorders. 

 Compared to the software implementation, hardware 

implementations of the AES algorithm more physical 

security as well as higher speed. There are a number of 

areas seeking even lower area designs for block cipher 

such as the AES in consumer electronics, for example 

mobile communications, which require modest data rates 

of the order of 1 Mbps. 

 A low cost and small design of AES algorithm can be 

used in smart card applications, which allow a wide range 

of equipment to operate securely. 

 

5. Result analysis 
 

The simulation results are carried out for fully pipelined AES 

to show the efficiency and throughput. Result synthesized 

and simulated using Xilinx ISE8.2i and ModelSim6.3f 

software’s. Efficiency and throughput of fully pipelined 

architecture is given in below table. 

 

Table 1: Execution time and Throughput 

Function 
Average Execution 

Time (µs) 

Throughput 

(Mbit/s) 

Key Expansion Cipher 4.71 27.18 

Cipher 16.50 7.76 

Inverse Cipher 20.56 6.23 

 

 
Figure 4: Encryption of 128 AES key 

 

 
Figure 5: Decryption of 128 AES key 

 

 
Figure 6: Encryption of 192 AES key 

 

 
Figure7: Decryption of 192 AES key 

 

 
Figure 8: Encryption of 256 AES key 
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Figure 9: Decryption of 256 AES key 

 

6. Future Scope 
 

In this project, there are 16 ways to construct the composite 

field GF from 16 sets of different irreducible polynomials 

with standard and   normal bases. If we can make availability 

of these polynomial more and differently, we can reduce the 

area further. This architecture can easily applied using 

pipelining or sub pipelining to get higher throughput. If we 

can optimize the architecture of on-the-fly key with three 

different keys and both encryption and decryption can 

handled, which can generate more than a 128-bit key in one 

cycle. 

 

7. Conclusion 
 

The proposed design is an implementation with a high 

throughput per kilo gates parameter which can perform 

encryption and decryption and support all the key sizes. A 

new architecture is proposed that only one 

MixColumn/InvMixColumn copy is used instead of two 

copies in prior works. The SubBytes is smaller than prior 

works. Here get a smallest MixColumn/InvMixColumn as 

already know. Furthermore, the architecture can be easily 

applied using pipelining or sub pipelining to get higher 

throughput.  The design is quite efficient for it has the highest 

parameter throughput per kilo gate count as know with the 

same process. 
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