
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Implementation of RSA Cryptosystem Using

Ancient Indian Vedic mathematics

Shahina M. Salim
1
, Sonal A. Lakhotiya

2

1 G.H. Raisoni college of Engineering and Technology, Anjangaon bari Road, Amravati.

2 G.H. Raisoni college of Engineering and Technology, Anjangaon bari Road, Amravati.

Abstract: RSA is one of the most safest standard algorithm based on public key, for providing security in network. The hierarchical

overlay multiplier is used in RSA circuitry for multiplication operation. The most significant aspect is the development of division

architecture based on Ancient Indian Vedic Mathematics and embedding it in RSA encryption/decryption circuitry for improved

efficiency. Typically, modular-multiplication algorithm is used since no trial division is necessary, and the carry-save addition (CSA) is

employed to reduce the critical path. The implementation of RSA encryption/decryption algorithm using the algorithm of Ancient

Indian Vedic Mathematics that have been modified to improve performance. RSA circuitry implemented using vedic multiplication is

efficient in terms of area, speed compared to its implementation using conventional multiplication.

Keywords: RSA Cryptosystem, Modular Multiplication,, Modular exponentiation, Vedic Mathematics, FPGA, VHDL..

1. Introduction

Now a day‘s large number of internet and wireless

communication users has led to an increasing demand of

security measures and devices for protecting the user data

transmitted over the unsecured network so that unauthorized

persons cannot access it. The history of cryptography begins

with secret writings in the Ancient civilizations.

Cryptography is the practice and study of techniques for

secure communication in the presence of third parties (called

adversaries). Cryptography is closely related to the

disciplines of cryptology and cryptanalysis. Cryptography

includes techniques such as microdots, merging words with

images, and other ways to hide information in storage or

transit. More generally, it is about constructing and analyzing

protocols that block adversaries, various aspects in

information security such as data confidentiality, data

integrity, authentication, and non-repudiation are central to

modern cryptography. Modern cryptography exists at the

intersection of the disciplines of mathematics, computer

science, and electrical engineering. Applications of

cryptography include ATM cards, computer passwords, and

electronic commerce. However, in today's computer-centric

world, cryptography is most often associated with scrambling

plaintext (ordinary text, sometimes referred to as cleartext)

into ciphertext (a process called encryption), then back again

(known as decryption). Individuals who practice this field are

known as cryptographers. Modern cryptography concerns

itself with the following four objectives:

1) Confidentiality (the information cannot be understood by

anyone for whom it was unintended)

2) Integrity (the information cannot be altered in storage or

transit between sender and intended receiver without the

alteration being detected)

3) Non-repudiation (the creator/sender of the information

cannot deny at a later stage his or her intentions in the

creation or transmission of the information)

4) Authentication (the sender and receiver can confirm each

others, identity and the origin/destination of the

information).

Types of Cryptographic Algorithms:

There are several ways of classifying cryptographic

algorithms. The three types of algorithms are:

 Secret Key Cryptography (SKC): Uses a single key for

both encryption and decryption

 Public Key Cryptography (PKC): Uses one key for

encryption and another for decryption

 Hash Functions: Uses a mathematical transformation to

irreversibly "encrypt" information.

The RSA algorithm was publicly described in 1977 by Ron

Rivest, Adi Shamir, and Leonard Adleman at MIT; the letters

RSA are the initials of their surnames. The standard

techniques for providing privacy and security in data

networks include encryption/decryption algorithms such as

Advanced Encryption System (AES) (private-key) and RSA

(public- key). Rivest–Shamir–Adleman (RSA) is one of the

most widely preferred algorithms used in public-key.

Cryptography systems. RSA is one of the safest standard

algorithms, based on public-key, for providing security in

networks. RSA has a very slow ciphering rate if used in

software. Security has become an increasingly important

feature with the growth of electronic communication. The

development of public-key cryptography (PKC) is the

greatest and perhaps the only true revolution in the entire

history of cryptography. Many PKC algorithms such as

rivest–shamir–adleman (RSA) algorithm and Diffie–Hellman

algorithm have been proposed. PKC is asymmetric involving

the use of two separate keys, in contrast to symmetric

conventional encryption, which uses only a single key. The

use of two keys provides solution to key management and

user authentication in a cryptosystem. RSA algorithm is the

best known, the most versatile and widely used public key

algorithm today RSA depends on the modular exponentiation

of long integers, which is the critical operation for a variety

Paper ID: SUB154843 3221

http://en.wikipedia.org/wiki/Secure_communication
http://en.wikipedia.org/wiki/Adversary_%28cryptography%29
http://searchsecurity.techtarget.com/definition/cryptology
http://searchsecurity.techtarget.com/definition/cryptanalysis
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Information_security
http://en.wikipedia.org/wiki/Confidentiality
http://en.wikipedia.org/wiki/Data_integrity
http://en.wikipedia.org/wiki/Data_integrity
http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Non-repudiation
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Electrical_engineering
http://en.wikipedia.org/wiki/Automated_teller_machine
http://en.wikipedia.org/wiki/Password
http://en.wikipedia.org/wiki/Electronic_commerce
http://searchsecurity.techtarget.com/definition/plaintext
http://searchcio-midmarket.techtarget.com/definition/ciphertext
http://searchsecurity.techtarget.com/definition/encryption
http://en.wikipedia.org/wiki/Ron_Rivest
http://en.wikipedia.org/wiki/Ron_Rivest
http://en.wikipedia.org/wiki/Adi_Shamir
http://en.wikipedia.org/wiki/Leonard_Adleman
http://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

of the most widely accepted cryptosystems. Figure 1.1 shows

public key encryption. A user of RSA creates and then

publishes a public key based on the two large prime numbers,

along with an auxiliary value. The prime numbers must be

kept secret. Anyone can use the public key to encrypt a

message, but with currently published methods, if the public

key is large enough, only someone with knowledge of the

prime numbers can feasibly decode the message.

Breaking RSA encryption is known as the RSA problem;

whether it is as hard as the factoring problem remains an

open question. Therefore, fast modular multiplication

becomes the key to real-time encryption and decryption since

a high throughput is needed in data communication. The

most widely used algorithm for efficient modular

multiplication is Montgomery‘s algorithm. The binary

Montgomery‘s modular-multiplication algorithm employs

only simple addition, subtraction, and shift operation to avoid

trial division, a critical and time-consuming operation in

conventional modular multiplication. The modular

exponentiation is usually accomplished by performing

repeated modular multiplications. There are approximately

10
151

 primes 512 bits in length or less. With approximately

10
77

 atoms in the universe, and if every atom in the universe

needed a billion new primes every microsecond from the

beginning of time until now, you would need only 10
109

primes. So the odds of two people picking the same prime at

random is, for all practical purposes, zero.

Figure 1.1: Public Key Encryption

The Sanskrit word 'Veda' means 'knowledge'. The Vedas

consist of a huge number of documents there are said to be

thousands of such documents in India, many of which have

not yet been translated, which are shown to be highly

structured, both within themselves and in relation to each

other. Some documents, called 'Ganita sutras' (the name

'ganita' means mathematics), were devoted to mathematical

knowledge. Sri Bharati Krishna Tirtha Maharaj, who is

generally considered the doyen of this discipline, in his

seminal book Vedic Mathematics, wrote about this special

use of sutras. Vedic Mathematics" was the name given by

him. He was the person who collected lost formulae from the

writings of "Atharwa Vedas" and wrote them in the form of

Sixteen Sutras and thirteen sub-sutras.

According to him, there has been considerable literature on

Mathematics in the Veda-sakhas. Unfortunately most of it has

been lost to humanity as of now. This is evident from the fact

that while, by the time of Patanjali, about 25 centuries ago,

1131 Veda-sakhas were known to the Vedic scholars, only

about ten Veda-sakhas are presently in the knowledge of the

Vedic scholars in the country. The Sutras apply to and cover

almost every branch of Mathematics. They apply even to

complex problems involving a large number of mathematical

operations. Application of the Sutras saves a lot of time and

effort in solving the problems, compared to the formal

methods presently in vogue. Though the solutions appear like

magic, the application of the Sutras is perfectly logical and

rational. The computation made on the computers follows, in

a way, the principles underlying the Sutras. The Sutras

provide not only methods of calculation, but also ways of

thinking for their application.

Vedic Mathematics is based on 16 sutras dealing with

mathematics related to arithmetic, algebra, and geometry.

These methods and ideas can be directly applied to

trigonometry, plain and spherical geometry, conics, calculus

and applied mathematics of various kinds. Application of the

Sutras improves the computational skills of the learners in a

wide area of problems, ensuring both speed and accuracy,

strictly based on rational and logical reasoning. The

knowledge of such methods enables the teachers to be more

resourceful to mould the students and improve their talent

and creativity. Application of the Sutras to specific problems

involves rational thinking, which, in the process, helps

improve intuition that is the bottom - line of the mastery of

the mathematical geniuses of the past and the present such as

Aryabhatta, Bhaskaracharya, Srinivasa Ramanujan, etc. The

Vedic methods are direct, and truly extraordinary in their

efficiency and simplicity. Research is being carried out in

many areas, including the effects on children who learn

Vedic maths and the development of new, powerful but easy

applications of the Vedic sutras in geometry, calculus,

computing etc. But the real beauty and effectiveness of Vedic

mathematics cannot be fully appreciated without actually

practicing the system. One an then see that it is perhaps the

most refined and efficient mathematical system possible.

2. Literature Review

With the recent advent of hardware description languages

(e.g. VHDL) and digital implementation for field-

programmable gate arrays (FPGAs), substantial academic

digital design projects become practicable. The time and

effort to implement significant design projects may be

undertaken without sacrificing the broad educational

demands placed upon the modern engineering student. The

authors have discussed the digital design, simulation, and

FPGA implementation, using Xilinx design tools and

simulation software. They have shown the digital architecture

used to implement the system.

Sriraman, L, Kumar K.S, Prabakar, T.N [1] presented Vedic

mathematics is one of the ancient Indian mathematics which

contains sixteen sutras. These sutras can be used to solve

problems in any branch of Mathematics in a faster way. The

proposed squarer is based on sutra called Ekadhikena

Purvena. It means that ―one more than the previous‖. This

sutra is used for finding the square of decimal numbers

ending with `5'. In this paper this sutra is generalized and

used for squaring of binary numbers [2].

Paper ID: SUB154843 3222

http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/RSA_problem

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Gustavo D. Sutter, Jean-Pierre Deschamps, and José Luis

Imana [3] presented Modular exponentiation with large

modulus and exponent, which is usually accomplished by

repeated modular multiplications, has been widely used in

public key cryptosystems. Typically, the Montgomery‗s

modular-multiplication algorithm is used since no trial

division is necessary, and the carry–save addition (CSA) is

employed to reduce the critical path. In this paper, we

optimize the Montgomery‗s multiplication and propose

architectures to perform the least significant bit first and the

most significant bit first algorithm. The RSA operation is a

modular exponentiation, and its security lies in its inability to

efficiently factor large integers. Moreover, since the size of

the modulus is at least 1024 b for long-term security, it

means that high throughput rate is hard to achieve without the

use of hardware acceleration. Efficient Montgomery‘s

multiplication and associated exponentiation algorithms and

circuit architectures have been presented.CSA was used to

perform large word-length additions in conjunction with

quotient precomputation and digit serial computation [4],[5].

F. Mace, F.-X. Standaert, and J.-J. Quisquater [6] presented,

SEA is a scalable encryption algorithm targeted for small

embedded applications. It was initially designed for software

implementations in controllers, smart cards, or processors.

Beyond its low cost performances, a significant advantage of

the proposed architecture is its full flexibility for any

parameter of the scalable encryption algorithm, taking

advantage of generic VHDL coding. The letter also carefully

describes the implementation details allowing us to keep

small area requirements.

Xiaoming Tang [7] presented Most FPGA support floating-

point IP core nowadays, but we have paid little attention to

the acquisition of data source. A certain range of real number

presented by ASCII code is converted to single precision

floating-point by pipeline processing with VHDL language.

Through functional simulation and download verification, the

conversion time is about 10 us when the clock is 50 MHz

.The conversion accuracy of this method can reach 10

calculated by MATLAB software.

Huddar, S.R. ,Rupanagudi, S.R. , Kalpana, M. , Mohan, S.

presented [8] With the advent of new technology in the fields

of VLSI and communication, there is also an ever growing

demand for high speed processing and low area design. It is

also a well known fact that the multiplier unit forms an

integral part of processor design. Due to this regard, high

speed multiplier architectures become the need of the day.

The speed of a processor greatly depends on its multiplier‘s

performance. This in turn increases the demand for high

speed multipliers, at the same time keeping in mind low area

and moderate power consumption. A novel high speed

architecture for multiplication of two 8 bit numbers,

combining the advantages of compressor based adders and

also the ancient Vedic maths methodology. A new

7:2compressor architecture, based on 4:2 compressor

architecture was also discussed [9].

Ali Ziya Alkara, Remziye Sonmez [10] presented Rivest–

Shamir–Adleman (RSA) is one of the most widely preferred

algorithms used in public-key cryptography systems. RSA

has a very slow ciphering rate if used in software. The use of

a specific hardware is the only reasonable solution in

applications where performance is the key factor. To speed

up the modular multiplication and squaring, bit level systolic

arrays are used with the Montgomery‘s modular

multiplication algorithm to constitute the core of modular

exponentiation operation. RSA algorithm is the best known,

the most versatile and widely used public key algorithm

today. Therefore, fast modular multiplication becomes the

key to real-time encryption and decryption since a high

throughput is needed in data communication. A 1024-bit

RSA algorithm using two single-row SA structures working

in parallel where each cell is formed of cells defined by Shin.

The results are obtained at the high-level synthesis stage and

show the highest possible clock rate that can be achieved.

The throughput is (n+2)(n+3)that corresponds to 1.0
5
_10

6

cycles.

G.P. Saggese, L.Romano [11] presented an accelerator which

can effectively improve the security and the performance of

virtually any RSA cryptographic application. RSA is the

most widely adopted standard for cryptographic systems, an

accelerator can effectively be used to improve the

dependability (namely security and performance) of a wide

class of security services. This work makes three important

contributions. The first contribution is the description of the

architecture itself. The second contribution is the

implementation of the architecture using Commercial Off

The Shelf (COTS) FPGA technology, namely a

CeloxicaRC1000programmable board mounting a Xilinx

Virtex-E 2000 FPGA part. The third contribution is the

experimental analysis of the tradeoffs––in terms of

performance vs. area occupation––which result from

different levels of parallelism, i.e. from different values of

the digit size of the RSA crypto-processor [12].

R.Bhaskar, Ganapathi Hegde, P.R.Vaya, [13] presented the

standard techniques for providing privacy and security in

data networks include encryption/decryption algorithms such

as Advanced Encryption System (AES) (private-key) and

RSA (public-key). One of the most time consuming processes

in RSA encryption/ decryption algorithm is the computation

of a b mod n where ―a‖ is the text, (b, n) is the key. Generally

the prime number used for RSA Encryption system will

around 100 to 150 decimal digits. The computations involved

are tedious and time consuming. Also the hardware is quite

complex. To increase the computation speed, the

multiplication principle of Vedic mathematics is used and

also an improvement is made in the conventional restoring

algorithm which does the modulus operation. ―Urdhva-

tiryakbhyam‖ is the sutra (principle) which used to compute

the multiplication. It literally means vertical and crosswise

manipulation [14].

Jaina, D, Sethi, K. , Panda, R.[15] presented Real-time signal

processing requires high speed and high throughput

Multiplier-Accumulator (MAC) unit that consumes low

power, which is always a key to achieve a high performance

digital signal processing system. In this paper, design of

MAC unit is proposed. The multiplier used inside the MAC

unit is based on the Sutra "Urdhva Tiryagbhyam" (Vertically

and Cross wise) which is one of the Sutras of Vedic

Paper ID: SUB154843 3223

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

mathematics. Vedic mathematics is mainly based on sixteen

Sutras and was rediscovered in early twentieth century. In

ancient India, this Sutra was traditionally used for decimal

number multiplications within less time. The same concept is

applied for multiplication of binary numbers to make it useful

in the digital hardware.

K.Z. Pekmestzi, N.K. Moshopoulos [16] presented a new

systolic serial–parallel scheme that implements the

Montgomery multiplier is presented. The serial input of this

multiplier consists of two sets of data that enter in a bit-

interleaved form. The results are also derived in the same

form. The design, with minor modifications, can be used for

the implementation of the RSA algorithm by realizing the

square-and-multiply algorithm. The circuit yields the lowest

hardware complexity reported and permits high-speed

operation with 100% efficiency. The core of an RSA

cryptosystem is the modular exponentiation, which can be

constructed by a sequence of modular multiplications and

squaring. These operations have to be performed in a serial

pipelined way, because of the operands length (>1024 bits).

The most efficient algorithm for modular multiplication was

presented by Montgomery. One approach proposes a direct

implementation of the Montgomery scheme by using two

similar circuits: one for multiplication and one for squaring

[17],[18]. Asymmetric encryption is a form of cryptosystem

in which encryption and decryption are performed using the

different keys—one a public key and one a private key. It is

also known as public-key encryption. Asymmetric encryption

transforms plaintext into cipher text using a one of two keys

and an encryption algorithm. Using the paired key and a

decryption algorithm, the plaintext is recovered from the

cipher text. Asymmetric encryption can be used for

confidentiality, authentication, or both. The most widely used

public-key cryptosystem is RSA. The difficulty of attacking

RSA is based on the difficulty of finding the prime factors of

a composite number. [19]

3. System Model Description

3.1 Introduction

Multipliers are extensively used in Microprocessors, DSP

and Communication applications. For higher order

multiplications, a huge number of adders are to be used to

perform the partial product addition. The need of high speed

multiplier is increasing as the need of high speed processors

are increasing. Higher throughput arithmetic operations are

important to achieve the desired performance in many real

time signal and image processing applications. One of the

key arithmetic operations in such applications is

multiplication and the development of fast multiplier circuit

has been a subject of interest over decades. Reducing the

time delay and power consumption are very essential

requirements for many applications. In the past multiplication

was implemented generally with a sequence of addition,

subtraction and shift operations. Two most common

multiplication algorithms followed in the digital hardware are

array multiplication algorithm and Booth multiplication

algorithm. Due to the importance of digital multipliers in

DSP, it has always been an active area of research.

3.2 Vedic Multiplication Technique

The use of Vedic mathematics lies in the fact that it reduces

the typical calculations in conventional mathematics to very

simple one. This is so because the Vedic formulae are

claimed to be based on the natural principles on which the

human mind works. Vedic Mathematics is a methodology of

arithmetic rules that allow more efficient speed

implementation. It also provides some effective algorithms

which can be applied to various branches of engineering such

as computing. A. Urdhva Tiryakbhyam Sutra The proposed

Vedic multiplier is based on the ―Urdhva Tiryagbhyam‖ sutra

(algorithm). These Sutras have been traditionally used for the

multiplication of two numbers in the decimal number system.

In this work, we apply the same ideas to the binary number

system to make the proposed algorithm compatible with the

digital hardware. It is a general multiplication formula

applicable to all cases of multiplication. It literally means

―Vertically and Crosswise‖. It is based on a novel concept

through which the generation of all partial products can be

done with the concurrent addition of these partial products.

The algorithm can be generalized for n x n bit number. Since

the partial products and their sums are calculated in parallel,

the multiplier is independent of the clock frequency of the

processor. Due to its regular structure, it can be easily layout

in microprocessors and designers can easily circumvent these

problems to avoid catastrophic device failures. The

processing power of multiplier can easily be increased by

increasing the input and output data bus widths since it has a

quite a regular structure. Due to its regular structure, it can be

easily layout in a silicon chip. The Multiplier based on this

sutra has the advantage that as the number of bits increases,

gate delay and area increases very slowly as compared to

other conventional multipliers.

3.2.1 Multiplication of two numbers 252 x 846:

To illustrate this scheme, let us consider the multiplication of

two decimal numbers 252 x 846 by Urdhva-Tiryakbhyam

method as shown in Fig. 3.1. The digits on the both sides of

the line are multiplied and added with the carry from the

previous step. This generates one of the bits of the result and

a carry. This carry is added in the next step and hence the

process goes on. If more than one line are there in one step,

all the results are added to the previous carry. In each step,

least significant bit acts as the result bit and all other bits act

as carry for the next step. Initially the carry is taken to be

zero.

Figure 3.1: Multiplication of two decimal numbers –252 x

846

Paper ID: SUB154843 3224

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The hardware architecture of 2X2, 4x4 and 8x8 bit Vedic

multiplier module are displayed in the below sections. Here,

―Urdhva-Tiryagbhyam‖ (Vertically and Crosswise) sutra is

used to propose such architecture for the multiplication of

two binary numbers. The beauty of Vedic multiplier is that

here partial product generation and additions are done

concurrently. Hence, it is well adapted to parallel processing.

The feature makes it more attractive for binary

multiplications. This in turn reduces delay, which is the

primary motivation behind this work.

3.2.2 Vedic Multiplier for 2x2 bit Module:

The method is explained below for two, 2 bit numbers A and

B where A = a1a0 and B = b1b0 as shown in Fig.3.2. Firstly,

the least significant bits are multiplied which gives the least

significant bit of the final product (vertical). Then, the LSB

of the multiplicand is multiplied with the next higher bit of

the multiplier and added with, the product of LSB of

multiplier and next higher bit of the multiplicand (crosswise).

The sum gives second bit of the final product and the carry is

added with the partial product obtained by multiplying the

most significant bits to give the sum and carry. The sum is

the third corresponding bit and carry becomes the fourth bit

of the final product.

s0 = a0b0; (1)

c1s1 = a1b0 + a0b1; (2)

c2s2 = c1 + a1b1; (3)

The final result will be c2s2s1s0. This multiplication method

is applicable for all the cases.

Figure 3.2: The Vedic Multiplication Method for two 2-bit

Binary Numbers

 Fig.3.2 The Vedic Multiplication Method for two 2-bit

Binary Numbers The 2X2 Vedic multiplier module is

implemented using four input AND gates & two half-adders

which is displayed in its block diagram in Fig.3.3. It is found

that the hardware architecture of 2x2 bit Vedic multiplier is

same as the hardware architecture of 2x2 bit conventional

Array Multiplier. Hence it is concluded that multiplication of

2 bit binary numbers by Vedic method does not made

significant effect in improvement of the multiplier‘s

efficiency. Very precisely we can state that the total delay is

only 2-half adder delays, after final bit products are

generated, which is very similar to Array multiplier. So we

switch over to the implementation of 4x4 bit Vedic multiplier

which uses the 2x2 bit multiplier as a basic building block.

The same method can be extended for input bits 4 & 8. But

for higher no. of bits in input, little modification is required.

Figure 3.3: Block Diagram of 2x2 bit Vedic Multiplier

3.2.3 Vedic Multiplier for 4x4 bit Module

The 4x4 bit Vedic multiplier module is implemented using

four 2x2 bit Vedic multiplier modules as discussed in

Fig.3.4. Let‘s analyze 4x4 multiplications, say A= A3 A2 A1

A0 and B= B3 B2 B1 B0. The output line for the

multiplication result is – S7 S6S5S4 S3 S2 S1 S0 .Let‘s

divide A and B into two parts, say A3 A2 & A1 A0 for A and

B3 B2 & B1B0 for B. Using the fundamental of Vedic

multiplication, taking two bit at a time and using 2 bit

multiplier block, we can have the following structure for

multiplication as shown in Fig. 3.4.

Figure 3.4: Sample Presentation for 4x4 bit Vedic

Multiplication

Each block as shown above is 2x2 bit Vedic multiplier. First

2x2 bit multiplier inputs are A1A0 and B1B0. The last block

is 2x2 bit multiplier with inputs A3 A2 and B3 B2. The

middle one shows two 2x2 bit multiplier with inputs A3 A2

& B1B0 and A1A0 & B3 B2. So the final result of

multiplication, which is of 8 bit, S7 S6S5S4 S3 S2 S1 S0. To

get final product (S7 S6 S5 S4 S3 S2 S1 S0), four 2x2 bit

Vedic multiplier (Fig. 3.5) and three 4-bit Ripple-Carry (RC)

Adders are required. The proposed Vedic multiplier can be

used to reduce delay. Early literature speaks about Vedic

multipliers based on array multiplier structures. On the other

hand, we proposed a new architecture, which is efficient in

terms of speed. The arrangements of RC Adders shown in

Fig.3.5, helps us to reduce delay. Interestingly, 8x8 Vedic

multiplier modules are implemented easily by using four 4x4

multiplier modules.

Paper ID: SUB154843 3225

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3.5: Block Diagram of 4x4 bit Vedic Multiplier

3.2.4 Vedic Multiplier for 8x8 bit Module:

The 8x8 bit Vedic multiplier module as shown in the block

diagram in Fig. 3.6 can be easily implemented by using four

4x4 bit Vedic multiplier modules as discussed in the previous

section. Let‘s analyze 8x8 multiplications, say A= A7 A6 A5

A4 A3 A2 A1 A0 and B= B7 B6 B5B4 B3 B2 B1B0. The

output line for the multiplication result will be of 16 bits as –

S15 S14 S13 S12 S11 S10 S9 S8 S7 S6S5S4 S3 S2 S1 S0.

Let‘s divide A and B into two parts, say the 8 bit

multiplicand A can be decomposed into pair of 4 bits AH-

AL. Similarly multiplicand B can be decomposed into BH-

BL. The 16 bit product can be written as:

 P = A x B = (AH-AL) x (BH-BL)

= AH x BH + (AH x BL + AL x BH) + AL x BL

Using the fundamental of Vedic multiplication, taking four

bits at a time and using 4 bit multiplier block as discussed we

can perform the multiplication. The outputs of 4x4 bit

multipliers are added accordingly to obtain the final product.

Here total three 8 bit Ripple-Carry Adders are required as

shown in Fig. 3.6.

Figure 3.6: Block Diagram of 8x8 bit Vedic Multiplier

3.2.5 Generalized Algorithm for N x N bit Vedic

Multiplier

We can generalize the method as discussed in the previous

sections for any number of bits in input. Let, the

multiplication of two N-bit binary numbers (where N = 1, 2,

3…N, must be in the form of 2N) A and B where A =

AN.....A3 A2 A1 and B = BN….B3 B2 B1. The final

multiplication result will be of (N + N) bits as S = S(N +

N)....S3 S2 S1.

Step 1: Divide the multiplicand A and multiplier B into two

equal parts, each consisting of [N to (N/2)+1] bits and [N/2

to 1] bits respectively, where first part indicates the MSB and

other represents LSB.

Step 2: Represent the parts of A as AM and AL, and parts of

B as BM and BL. Now represent A and B as AM AL and

BM BL respectively.

Step 3: For A X B, we have general format as shown in

Fig.3.7

Figure 3.7 : General Representation for Vedic Multiplication

Step 4: The individual multiplications product can be

obtained by the partitioning method and applying the basic

building blocks.

By adopting the above generalized algorithm we can

implement Vedic Multiplier for any number of bits say 16,

32, 64, and so on, as per the requirement. Therefore, it could

be possible to implement this Vedic multiplier in the ALU

(Arithmetic Logic Unit) which will reduce the computational

speed drastically & hence improves the processors efficiency.

3.3 RSA Cryptosystem

The RSA Algorithm is based on the mathematical fact that it

is easy to find and multiply the large prime numbers together,

but it is extremely difficult to factor their product. The public

and private keys in RSA are based on very large prime

numbers. The algorithm is simple but the complexity lies in

the selection and generation of public and private keys. The

RSA algorithm involves three steps: key generation,

encryption and decryption.

Paper ID: SUB154843 3226

http://en.wikipedia.org/wiki/Key_%28cryptography%29

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3.3.1. Key Generation

RSA involves a public key and a private key. The public key

can be known by everyone and is used for encrypting

messages. Messages encrypted with the public key can only

be decrypted in a reasonable amount of time using the private

key.

Figure 3.8: Flow chart of RSA algorithm

The keys for the RSA algorithm are generated the following

way:

1. Choose two distinct prime numbers p and q.

 For security purposes, the integer‘s p and q should be

chosen at random, and should be of similar bit-length.

Prime integers can be efficiently found using a primarily

test.

2. Compute n = p q.

 n is used as the modulus for both the public and private

keys. Its length, usually expressed in bits, is the key

length.

3. Compute φ(n) = φ(p)φ(q) = (p − 1)(q − 1) = n - (p + q -1),

where φ is Euler's totient function.

4. Choose an integer e such that 1 < e <φ(n) and gcd (e, φ(n))

= 1; i.e., e and φ(n) are co prime.

 e is released as the public key exponent.

 e having a short bit-length and small Hamming weight
results in more efficient encryption – most commonly

216 + 1 = 65,537. However, much smaller values of e

(such as 3) have been shown to be less secure in some

settings.

5. Determine d as d ≡ e−1 (mod φ(n)); i.e., d is the

multiplicative inverse of e (modulo φ(n)

 This is more clearly stated as: solve for d given d⋅e ≡ 1

(mod φ(n))

 This is often computed using the extended Euclidean

algorithm. Using the pseudo code in the Modular

integers section, inputs a and n correspond to e and φ(n),

respectively.

 d is kept as the private key exponent.

The public key consists of the modulus n and the public (or

encryption) exponent e. The private key consists of the

modulus n and the private (or decryption) exponent d, which

must be kept secret. p, q, and φ(n) must also be kept secret

because they can be used to calculate d.

Figure 3.9: System architecture for Key generation

3.3.2. Encryption

A transmits its public key (n, e) to B and keeps the private

key d secret. B then wishes to send message P to A , then

computes the cipher text C corresponding to.

C = P
e
 (mod n)

This can be done efficiently, even for 500-bit numbers, using

Modular exponentiation. B then transmits C to A.

Figure 3.10: RSA Encryption Structure

3.3.3 Decryption

A can recover P from C by using its private key exponent d

via computing

P = C
d
(mod n)

Thus we get the original message.

Figure 3.11: The RSA Decryption Structure

3.4 A Worked Example of RSA Encryption and

 Decryption

Here is an example of RSA encryption and decryption. The

parameters used here are artificially small, but one can also

use Open SSL to generate and examine a real key pair.

1. Choose two distinct prime numbers, such as

p= 61 and q=53

2. Compute n = pq giving

 n=61×53=3233

3. Compute the totient of the product as φ(n) = (p −

1)(q − 1) giving

Paper ID: SUB154843 3227

http://en.wikipedia.org/wiki/Private_key
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Primality_test
http://en.wikipedia.org/wiki/Primality_test
http://en.wikipedia.org/wiki/Modular_arithmetic
http://en.wikipedia.org/wiki/Key_length
http://en.wikipedia.org/wiki/Key_length
http://en.wikipedia.org/wiki/Euler%27s_totient_function
http://en.wikipedia.org/wiki/Greatest_common_divisor
http://en.wikipedia.org/wiki/Coprime
http://en.wikipedia.org/wiki/Bit-length
http://en.wikipedia.org/wiki/Hamming_weight
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Modular_integers
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Modular_integers
http://en.wikipedia.org/wiki/Modular_exponentiation
http://en.wikibooks.org/wiki/Cryptography/Generate_a_keypair_using_OpenSSL
http://en.wikipedia.org/wiki/Totient

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Φ (3233) = (61-1) (53-1) = 3120

4. Choose any number 1 < e < 3120 that is co prime to

3120. Choosing a prime number for e leaves us

only to check that e is not a divisor of 3120.

 Let e = 17

5. Compute d, the modular multiplicative inverse of e

(mod φ(n)) yielding,

d = 2753

Worked example for the modular multiplicative inverse:

 e × d mod Φ(n) =1

 17×2753 mod 3120

The public key is (n = 3233, e = 17) .For a padded plaintext

message m, the encryption function is

 c (m) = m
17

 mod 3233

The private key is (d = 2753). For an encrypted cipher text

c, the decryption function is

 m(c) = c
2753

 mod 3233

For instance, in order to encrypt m = 65, we calculate

To decrypt c = 2790, we calculate

 m = 2790
2753

 mod 3233

Both of these calculations can be computed efficiently using

the square- and -multiply algorithm for modular

exponentiation. In real-life situations the primes selected

would be much larger; in our example it would be trivial to

factor n, 3233 (obtained from the freely available public key)

back to the primes p and q. Given e, also from the public key,

we could then compute d and so acquire the private key.

4. Result and Discussion

The objectives of this project are to design and implement

the RSA CRYPTOSYSTEM to improve speed performance,

area reduction and throughput. The implementation of RSA

cryptosystem includes Key generation, Encryption and

Decryption in Modelsim simulation Environment which was

an interesting task to design that module. To begin the testing

of encryption /decryption process, a set of RSA parameters

has calculated. Then the calculated parameters have been fed

into the RSA_CORE module and the results have been

compared with the theoretical values. Assumed that p = 61, q

= 53. To generate the two keys, the product is computed as, n

= p x q = 3233=0CA1. The Euler‘s Totient function of n is

computed as, φ = 3120. Public key e is randomly chosen such

that e and φ is relatively prime. Here, e = 11 has been chosen.

Finally, the Extended Euclid‘s algorithm is used to compute

the decryption key, d. The private key for decryption

obtained as d = 0AC1. For each of the key size following

input set is used:

Encryption: Message, M = 716

Public key, E = 1116

Modulus, N = 0CA116

Decryption: Message, M = 094116

Public key, E = 0AC116

Modulus, N = 0CA116

Thus, public key = (11, 3233), private key = (0AC1).

Fig. 6.1 shows the simulation result of key generation.

Figure 4.1: Simulation result of Key generation

Table 1: Design Summary of Key generation

Logic Utilization

Used Available Utilization

Number of Slices

498 4656 10%

Number of 4 input LUTs

902 9312 9%

Number of IOs

64

Number of bonded IOBs

64 232 27%

Delay

239.976ns (Levels of Logic = 168)

 Fig 4.2 shows the simulation result of Encryption, which

gives the plain text. The Table II shows the Device

Utilization Summary for Encryption. The Timing Summary is

shown in Table III.

Figure 4.2: Simulation result of Encryption

Table 2: Design Summary of Encryption

Logic Utilization

Used Available Utilization

Number of Slices

517 4656

11%

Number of Slice Flip Flops

459 9312 4%

Number of 4 input LUTs

936 9312 10%

Number of IOs

132

Number of bonded IOBs

132 232 56%

Number of GCLKs

1 24 4%

Table 3: Timing Summary of Encryption

Speed Grade

-4

Minimum period

12.266ns (Maximum

Frequency: 81.523MHz)

 Minimum input arrival time before clock

5.241ns

 Maximum output required time after clock

5.169ns

Fig 4.3 shows simulation result of decryption. The Device

utilization summary of decryption is summarized in Table

IV. The timing summary is shown in Table V.

Figure 4.3: Simulation result of Decryption

Paper ID: SUB154843 3228

http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://en.wikipedia.org/wiki/Plaintext
http://en.wikipedia.org/wiki/Ciphertext
http://en.wikipedia.org/wiki/Square-and-multiply_algorithm
http://en.wikipedia.org/wiki/Modular_exponentiation
http://en.wikipedia.org/wiki/Modular_exponentiation

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 4: Design Summary of Decryption

Logic Utilization Used Available Utilization

Number of Slices

517 4656

11%

Number of Slice Flip Flops

459 9312 4%

Number of 4 input LUTs

936 9312 10%

Number of IOs

132

Number of bonded IOBs

132 232 56%

Number of GCLKs

1 24 4%

Table 5: Timing Summary of Decryption.
Speed Grade

-4

Minimum period

12.266ns (Maximum

Frequency: 81.523MHz)

 Minimum input arrival time before clock

5.241ns

 Maximum output required time after clock

5.169ns

5. Advantages

1) The biggest advantage of RSA is that it uses asymmetric

keys.

2) Very high speed of encryption.

3) Private Keys are completely unknown to everybody, even

the Trust Authority's manager !

All keys are written into chips and are not accessible to

humans or other machines. This Guarantees the privacy of all

the end-users.

4) New applications can be added without updating the chip.

5) RSA has it's advantages of being a reliable and safe system

6. Applications

RSA algorithm is the most used algorithm in commercial

systems.

1) It is used to protect web traffic, in the SSL protocol

(Security Socket Layer).

2) It is used to guarantee email privacy and authenticity in

PGP (Pretty Good Privacy),Remote connection in SSH

(SecureShell).

3) Furthermore it plays an important role in the modern

payment systems through SET Protocol (Secure Electronic

Transaction).

4) RSA has been used in most digital data, information and

telephone security applications.

5) It is used worldwide to secure Internet, banking and credit

card transactions.

7. Conclusion

The RSA encryption/decryption system is implemented using

the Vedic Mathematics algorithm to increase its computation

speed. The advantage of the Vedic multiplier is that it

calculates the partial products in one single step and there are

no shift operations which saves the time and the hardware.

As the number of message bits increases the gate delay as

well as the area increase slowly. Hence it can be used

effectively in all the cryptographic applications. It is found

that this design is quite efficient in terms of silicon area and

speed and should result in substantial savings of resources in

hardware when used for crypto and security applications.

8. Future Scope

There is a huge implication for the Internet technology

industry. The algorithm which is created runs with far greater

efficiency than one of the industry‘s best algorithms. The

implementation of this algorithm into websites for e-

commerce or email could mean huge speedups in

performance. The increase in speed could also allow

cryptographers to use larger key sizes for greater security,

without having to compromise speed. Ideas for improving

this algorithm include implementing a finite field in base 3 or

even finding variations of this algorithm that improve certain

security issues such as resistance to side-channel attacks.

Another possibility for future work is implementing this

algorithm with special large integer (> 232 bits) manipulation

parallelization or programming NIST recommended elliptic

curves. Efficient security mechanisms for resource

constrained devices. Quite efficient in terms of silicon area

and speed and should result in substantial saving of resources

when used for crypto and security applications.

References

[1] Sriraman, L. Dept. of Electron. &Commun. Eng.,

Oxford Eng. Coll., Trichy, India;Kumar, K.S.

;Prabakar, T.N.“Design and FPGA implementation of

binary squarer using Vedic mathematics‖IEEE Trans.

Ind. Electron., July 2013.

[2] Prabir Saha, Arindam Banerjee, Partha Bhattacharyya,

Anup Dandapat ―High Speed ASIC Design of Complex

Multiplier Using Vedic Mathematics‖ Proceeding of the

2011 IEEE Students' Technology Symposium 14-16

January, 2011, lIT Kharagpur.

[3] Gustavo D. Sutter, Member, IEEE, Jean- Pierre

Deschamps, and José Luis Imaña , “Modular

Multiplication and Exponentiation Architectures for

Fast RSA Cryptosystem Based on Digit Serial

Computation” IEEE Trans. Ind.Electron.,vol.57,no.10,

p.p3308–3316, Oct. 2010.

[4] E. Monmasson and M. N. Cirstea, ―FPGA design

methodology for industrial control systems—A review,‖

IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1824–

1842, Aug .2007.

[5] J. J. Rodriguez-Andina, M. J. Moure, and M. D.

Valdes, ―Features, design tools, an Application

domains of FPGAs‖, IEEE Trans. Ind. Electron., vol.

54, no. 4, pp. 1810,1823, Aug. 2007.

[6] F. Macé, F. -X. Standaert, and J.-J. Quisquater ,“FPGA

Implementation of a Scalable Encryption Algorithm‖ ,

IEEE Transactions on Very large Scale Integration

(VLSI) systems, vol. 16, no. 2, February 2008.

[7] Xiaoming Tang ; Res. Inst. of Inf. Fusion, Naval

Aeronaut. & Astronaut. Univ., Yantai, China; Tao

Zhang ; Zhenjie Wang ; Wenliang Yuan, ―A novel data

format conversion method based on FPGA‖, IEEE

Trans. Ind. Electron ,July 2011.

[8] Huddar, S.R. ; WorldServe Educ., Bangalore, India ;

Rupanagudi, S.R. ; Kalpana, M. Mohan, S, “Novel high

speed vedic mathematics multiplier using

compressors”, IEEE Trans. Ind. Electron ,March 2013.

Paper ID: SUB154843 3229

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[9] M. Ramalatha, K. Deena Dayalan, S. Deborah Priya,

―High Speed Energy Efficient ALU Design using Vedic

Multiplication Techniques,‖ Advances in

Computational Tools for Engineering Applications,

2009, IEEE Proc., pp 600-603.

[10] A.Z. Alkar, R. Sonmez, An ASIC Implementation of

the RSA Algorithm 18th MUG International

Conference, February 2002.

[11] G.P. Saggese a, L. Romano a, N. Mazzocca b, A.

Mazzeo, ―A tamper resistant 50 hardware accelerator

for RSA cryptographic applications”, Journal of

Systems Architecture (2004) 711–727.

[12] IEEE Std 1363–2000: Standard specifications for

Public- Key cryptography. IEEE, August 2000.

[13] R. Bhaskar, Ganapathi Hegde, P. R. Vaya, ―An efficient

hardware model for RSA Encryption system usingVedic

mathematics”,International Conference on Technology

Communication and System Design 2011.

[14] Nitish Aggarwal , Kartik Asooja , Saurabh Shekhar

Verma, Sapna Negi, ―An Improvement in the Restoring

Division Algorithm‖, IEEE 2009.

[15] Jaina, D. Dept. of Electron. & Telecommun. Eng., VSS

Univ. of Technol., Burla, India; Sethi, K. ; Panda, R,

―Vedic Mathematics Based Multiply Accumulate Unit‖

IEEE Trans. Ind. Electron ,Oct. 2011.

[16] K.Z. Pekmestzi*, N.K. Moshopoulos, ―A bit-

interleaved systolic architecture for a High speed RSA

system‖, INTEGRATION, the VLSI journal 30 (2001)

169–175.

[17] R.L.Rivest, A. Shamir, and L.Adleman, ―A method for

obtaining digital signature and public-key

cryptosystems”,Commun. ACM, vol. 21, no. 2, pp.

120–126, Feb 1978.

[18] C. Yang, T. Chang, C. Jen, ―A new RSA cryptosystem

hardware design based on Montgomery algorithm”,

IEEE Trans.Circuits Systems II 45 (7) (1998) 908–913.

[19] William Stallings,―Cryptography and Network

Security, Third Edition, Pearson Education, 2003.

Paper ID: SUB154843 3230

