
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 5, May 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Implementing Java Distributed Objects with JDBC 
 

Bhawna
1
, Sumit Wadhwa

2
  

 
1Research Scholar Department of Computer Science and Engineering, NNSS SGI Samalkha, Kurukshetra University Kurukshetra 

 
2Assistant .Professor Department of Computer Science and Engineering, NNSS SGI Samalkha, Kurukshetra University Kurukshetra 

 

 

Abstract: Organizations rely on information to make effective business decisions and corporate intranets are changing the way 

organizations conduct business. As networking technologies continue to improve, with increasing bandwidth and reliability, effective 

distributed computing is becoming a reality. Organizations are relying on internet technologies to be the conduit for employees to 

access and manipulate corporate information. Having timely and accurate information is essential for effective management practices 

and optimization of limited resources. Information can be stored effectively and efficiently in Database Management Systems (DBMS), 

a software system that manages the data integrity, storage and access of data in a database. The goal of a database is to reduce 

redundant storage of information throughout an organization. Java is destined to become a language for distributed computing. Java 

Development Kit (JDK) comes with a broad range of classes for network and database programming. Java Database Connectivity 

(JDBC) is one such class for providing client/server database access. 

 

Keywords: JDBC, Applet, RMI, CORBA, SOAP 

 

1. Introduction 
 

Java, as a relatively simple, object-oriented, secure and 

portable language, is also a flexible and powerful 

programming system for distributed computing. Program 

development with Java results in software that is portable 

across multiple machine architectures and operating systems. 

Distributed programming in Java is supported by remote 

method invocation (RMI), object serialization, reflection, a 

Java security manager and distributed garbage collection. 

Java RMI is designed to simplify the communication between 

objects in different virtual machines allowing transparent 

calls to methods in remote virtual machines.Organizations 

rely on information to make effective business decisions and 

corporate intranets are changing the way organizations 

conduct business. Information can be stored effectively and 

efficiently in Database Management Systems (DBMS), a 

software system that manages the data integrity, storage and 

access of data in a database.The goal of a database is to 

reduce redundant storage of information throughout an 

organization. Data is stored in a central location and multiple 

clients are allowed to access the data from various locations 

throughout the organization's network or via the internet. In 

this client/server environment, client processes need to be 

able to effectively locate the database server, and 

communicate with the remote server process. Java is destined 

to become a language for distributed computing. Java 

Development Kit (JDK) comes with a broad range of classes 

for network and database programming. Java Database 

Connectivity (JDBC) is one such class for providing 

client/server database access. In this paper we focus on two 

different approaches: Remote Method Invocation (RMI) and 

Common Object Request Broker Architecture (CORBA) 

with JDBC 

 

2. Literature Review 
 

The first version of JVMs had poor support for monitoring 

Java programs. Initially there was a simple debugger, jde, 

attached to the Java Development Kit (JDK). Then, there was 

an instrumented Java virtual machine build for JDK version 

1.16 to support the collection of profiling data generated 

when executing a Java program. This approach was 

developed until version 2 of the Java platform. All JVMs for 

the new Java platform were equipped with interfaces for 

debugging (JVMDI) [6] and profiling (JVMPI) [7]. A new 

release of Java 2 Platform version 1.5, called Tiger, contains 

a new native profiling interface called JVMTI which is 

intended to replace JVMPI and JVMDI. JVMTI aims to 

cover the full range of native in-process tools access, which 

in addition to profiling, includes monitoring, debugging and, 

potentially, a wide variety of other code analysis tools. Most 

of the tools for JVM versions from 1.2 to 1.4 are based on 

the Java Virtual Machine Profiling Interface (JVMPI) [7]. 

Starting with JDK 1.2 SDK it also includes an example 

profiler agent for efficiency examination called hprof [8], 

which can be used to build professional profilers. A Heap 

Analysis Tool (Hat) [9] enables one to read and analyze 

profile reports of the heap generated by the hprof tool and 

may be used e.g. for debugging “memory leaks”. Tracer [10] 

is a debugger which provides traditional features, e.g. a 

variable watcher, breakpoints and line-by-line execution. J-

Sprint [11] provides information about what parts of a 

program consume the most of execution time and memory. 

JProfiler [12], targeted at JEE and JSE applications, provides 

information on CPU and memory usage, thread profiling and 

VM. Its visualization tool shows the object references chain, 

execution control flow, thread hierarchy and general 

information about JVM using special displays. All these tools 

have similar features: memory, performance, code coverage 

analysis, program debugging, thread deadlock detection and 

class instrumentation, but many of them are designed to 

observe a single-process Java application and do not support 

directly monitoring a distributed environment based on RMI 

middleware, except for JaViz [17], which is intended to 

supplement the existing performance analysis tools with 

tracing client/server activities to extend Java‟s profiling 

support for distributed environments.  

 

Paper ID: SUB154795 2289



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 5, May 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

3. Distributed Applications 
 

The term distributed applications, is used for applications 

that require two or more autonomous computers or processes 

to cooperate in order to run them. Thus, the distributed 

system considered in this thesis, involves three resources, 

processing, data and user interface. Both processing and data 

can be distributed over many computers. The user interface is 

usually local to the user so that the graphical interface, which 

consumes high bandwidth, does not have to be transmitted 

from one location to another (figure 1). 

 
Figure 1.A Typical Distributed Application Scenario 

 

In distributed computing, the computer network is used to 

support the execution of program units, called processes that 

cooperate with one another to work towards a common goal. 

This approach has become popular due to a number of 

developments like: 

 Increase in the number of personal computers 

 Low cost of establishing computer networks with the 

advancement of technology 

 Computer manufacturers now offer networking software as 

a part of the basic operating system 

 Computer networks are now an established way of 

disseminating information 

 

The modern client/server model uses proxy objects for 

server and client respectively. The client calls the proxy, 

making a regular method call. The client proxy contacts the 

server. Similarly, a second proxy object on the server 

communicates with the client proxy, and it makes regular 

calls to the server object. 

 

Methods of proxies’ communications: There are three 

different methods with which proxies communicate with each 

other. 

1. RMI, the Java Remote Method Invocation technology, 

supports method calls between distributed Java objects. 

2. CORBA, the Common Object Request Broker 

Architecture, supports method calls between objects of  

3. Any programming language. CORBA uses the Internet 

Inter-ORB Protocol or IIOP to communicate between 

objects. 

4. SOAP, the Simple Object Access Protocol, is also 

programming – language neutral. However, SOAP uses 

an XML-based transmission format 

4. Remote Method Invocation 
 

RMI allows a Java object that executes on one machine to 

invoke a method of the Java object that executes on another 

machine. This is an important feature, because it allows 

building distributed application. All the RMI classes are 

available in jave.rmi package. To use different classes of this 

package we must import the java.rmi package in the 

beginning of the Java program. One main application where 

RMI is used client/server. The server receives requests from 

a client, processes it & returns the result. For example, the 

client seeking product information can query a Ware House 

object on the server. It calls a remote method, find, which has 

one parameter: a Customer object. The find method returns 

an object to the client: the Product object (Figure 2). 

 

 
Figure 2: RMI using Client & Server Object 

 

In RMI terminology, the object whose method makes the 

remote call is called the client object. The remote object is 

called the server object. Following steps are required for 

creating RMI/JDBC connection object: 

 

i. Creating the connection object  

The first step we will take in building our RMI process is in 

the creation of a connection object. This object will be used 

to provide multi-user access to our database. 

 

ii. Creating the Remote Interface 

The RMI process begins with an interface that defines the 

methods accessible to the RMI client. As with all other 

abstract classes, the interface serves only to define the remote 

object's methods and parameters; they do not contain any 

actual programming logic. 

 

iii. Creating the Remote Object 

After the creation of the remote interface, we continue by 

building the actual remote object. The remote object 

implements the interface and incorporates the program code 

that will be run when its methods are called. This object 

performs the actual execution process, or invocation, of the 

RMI. 

 

Paper ID: SUB154795 2290

http://b62.tripod.com/java/rmi5.html


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 5, May 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

iv. Creating a RMI Client Applet 

The remote object that we just created will be used within a 

background process running on the Web server. It represents 

the "server" side of the "distributed" computing model. The 

"client" side can be constructed either as a Java application 

or as an applet. 

 

v. Create a Registration Program 

We need to bind the remote object to the RMI registry. 

 

vi. Creating the HTML file for executing Applet 

The jr.html document contains an <APPLET> tag to run the 

client Applet. 

Result of above implementation is shown in figure 3, 4 & 5 

below: 

 

 
Figure 3: Starting the RMI registry. 

 

 
Figure 4: Output of JRStart Server 

 
Figure 5: Output from the JRApplet Client program after 

submitting request. 

 

5. Common Object Request Broker 

Architecture 
 

Though RMI is a powerful mechanism for distributing and 

processing objects in a platform-independent manner, it has 

one significant drawback. it only works with objects that 

have been created using Java. Convenient though it might be 

if Java were the only language used for creating software 

objects, this simply is not the case in the real world. A more 

generic approach to the development of distributed systems is 

offered by CORBA (Common Object Request Broker 

Architecture), which allows objects written in a variety of 

programming languages to be accessed by client programs 

which themselves may be written in a variety of 

programming languages.Another fundamental difference 

between RMI and CORBA is that, whereas RMI uses Java to 

define the interfaces for its objects, CORBA uses a special 

language called Interface Definition Language (IDL) to 

define those interfaces. Although this language has syntactic 

similarities to C++, it is not a full-blown programming 

language. In order for any ORB to provide access to software 

objects in a particular programming language, the ORB has 

to provide a mapping from the IDL to the target language. 

Mappings currently specified include ones for Java, C++, C, 

Smalltalk, COBOL and Ada.At the client end of a CORBA 

interaction, there is a code stub for each method that is to be 

called remotely. This stub acts as a proxy (a 'stand-in') for the 

remote method. At the server end, there is skeleton code that 

also acts as a proxy for the required method and is used to 

translate the incoming method call and any parameters into 

their implementation-specific format, which is then used to 

invoke the method implementation on the associated object. 

Method invocation passes through the stub on the client side, 

then through the ORB and finally through the skeleton on the 

server side, where it is executed on the object. For a client 

and server using the same ORB, Figure 6 shows the process. 

 

Paper ID: SUB154795 2291

http://b62.tripod.com/java/rmi6.html


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 5, May 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 
Figure 6: Remote method invocation when client and server 

are using the same ORB. 

 

In order to illustrate a distributed computing model using 

CORBA, as well as its ability to provide persistency in 

Internet computing, we will build a simple application using 

the JDBC. CORBA allows an applet to communicate with 

one instance of a particular remote object that was previously 

registered with the CORBA Naming Service.  

 

i. Creating the Remote Interface 

All CORBA applications begin with an interface that defines 

the methods accessible to the CORBA client. This interface 

is written in the Interface Definition Language and converted 

to a native language. In our case, the language is Java. 

 

ii. Creating the CORBA/JDBC Connection Object 

The JDBC Connection object is where the database 

connection logic is contained. A new object will be spawned 

by the CORBA server for every client that opens a 

connection to it. In this way we will be able to support 

multiple concurrent users. 

 

iii. Creating a CORBA Server Object 

After the creation of the IDL interface and the associated 

Java interface classes, we continue by building the remote 

object's implementation. The remote object extends the base 

skeleton object, _JIImplBase that was created by the 

idltojava tool. It also incorporates the program logic that will 

be run when its methods are called by a CORBA client. The 

server object is also referred to as a servant. 

 

iv. Creating a CORBA Client Applet 

The servant object that we just created will be executed as a 

background process running on the Web server. It represents 

the "server" side of the "distributed" computing model. The 

"client" side can be constructed either as a Java application 

or as an applet.  

 

v. Create a Servant Bootstrap Program 

The final step in setting up our CORBA server object is to 

create a bootstrap program for the servant. This is done 

through a small program that initializes the object to the 

CORBA server and binds it with the Naming Service. 

 

vi. Creating the HTML file for executing Applet 

The ji.htm document contains an <APPLET> tag to run 

JIApplet.class 

Result of above implementation is shown in figure 3, 7, 8 & 

9 below: 

 
Figure 7: Starting the CORBA naming service under Java 

IDL 

 
Figure 8: The result of Server program JIStart 

 
Figure 9: The result of Client program JIApplet after 

submitting request 
 

6. Simple Object Access Protocol 
 

IBM, Lotus Development Corporation, Microsoft, Develop 

Mentor and User land Software developed and drafted 

SOAP, which is an HTTP-XML-based protocol that enables 

applications to communicate over the Internet, by using XML 

documents called SOAP messages.SOAP is compatible with 

any object model, because it includes only functions and 

capabilities that are absolutely necessary for defining a 

communication framework. Thus, SOAP is both platform and 

Paper ID: SUB154795 2292

http://b62.tripod.com/java/idl5.html
http://b62.tripod.com/java/idl.htm#idl8
http://b62.tripod.com/java/idl.htm#idl9
http://b62.tripod.com/java/idl.htm#idl9


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 5, May 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

software independent, and any programming language can 

implement it. SOAP supports transport using almost any 

conceivable protocol. SOAP binds to HTTP and follows the 

HTTP request–response model. SOAP also supports any 

method of encoding data, which enables SOAP-based 

applications to send virtually any type information (e.g., 

images, objects, documents, etc.) in SOAP messages. A 

SOAP message contains an envelope, which describes the 

content, intended recipient and processing requirements of a 

message. The optional header element of a SOAP message 

provides processing instructions for applications that receive 

the message.  

 

7. Conclusion 
 

During the first two decades of their existence, computer 

systems were highly centralized. A computer was usually 

placed within a large room and the information to be 

processed had to be taken to it. This had two major flaws, a) 

the concept of a single large computer doing all the work and 

b) the idea of users bringing work to the computer instead of 

bringing the computer to the user. This was followed by 

„stand alone PCs‟ where the complete application had to be 

loaded on to a single machine. Each user has his/her own 

copy of the software. The major problems were a) sharing 

information and b) redundancy. These two concepts are now 

being balanced by a new concept called computer networks. 

In computer networking a large number of separate but 

interconnected computers work together. An application that 

requires two or more computers on the network is called a 

network application. The client–server model is a standard 

model for network applications. A server is a process that is 

waiting to be contacted by a client process so that the server 

can do something for it. A client is a process that sends a 

request to the server. 

 

8. Acknowledgment  

 
Author would like to give sincere gratitude especially to 

Mr.Sumit Wadhwa (Guide), for his guidance and support to 

pursue this work. 

 

References 
 

[1] Bubak M, Funika W, Metel P, Orłowski R and 

Wism¨uller R 2002 Proc. 4 th Int. Conf. PPAM 2001, 

Naleczow, Poland, LNCS 2328 315 

[2] Bubak M, Funika W, Smetek M, Kilianski Z and 

Wism¨uller R 2003 Proc. 10 th European PVM/MPI 

Users‟ Group Meeting, Venice, Italy, LNCS 2840 447 

[3] Bubak M, Funika W, Wism¨uller R, Metel P and 

Orłowski R 2003 Future Generation Computer Systems 

19 651 

[4] Bubak M, Funika W, Smetek M, Kilianski Z and 

Wism¨uller R 2004 Proc. 5 th Int. Conf. PPAM, 

Czestochowa, Poland, LNCS 3019 352 

[5] Funika W, Bubak M, Smetek M and Wism¨uller R 2004 

Proc. Int. Conf. on Computational Science, Cracow, 

Poland, LNCS 3038 472 

[6] Sun Microsystems: Java Virtual Machine Profiler 

Interface (JVMDI), 

http://java.sun.com/j2se/1.4.2/docs/guide/jpda/jvmdi-

spec.html 

[7] Sun Microsystems: Java Virtual Machine Profiler 

Interface (JVMPI), http://java.sun.com/j2se 

/1.4.2/docs/guide/jvmpi/jvmpi.html 

[8] The SDK Profiler, http://www.javaworld.com 

/javaworld/jw-12-2001/jw-1207-hprof.html 

[9] Sun‟s Heap Analysis Tool (HAT) for Analysing Output 

from hprof, 

http://java.sun.com/developer/onlineTraining/Programmi

ng/JDCBook/hat bin.zip 

[10] JTracer Tool, http://amslib.free.fr/ 

[11] Java Profiler J-Sprint, http://www.j-sprint.com/ 

[12] JProbe, http://java.quest.com/jprobe/jprobe.shtml 

[13] JView, http://www.devstream.com/ 

[14] Kazi I H, Jose D P, Ben-Hamida B, Hescott C J, Kwok 

C, Konstan J, Lilja D J and Yew P-C 2000 IBM Systems 

Journal 39 (1) 96; 

http://www.research.ibm.com/journal/sj/391/kazi.html 

[15] Sun Microsystems: Java Platform Debug Architecture 

(JPDA), http://java.sun.com/j2se/1.4.2/docs/guide/jpda/ 

 

Author Profile  
 

Bhawna is currently in final year M TECH Computer 

science and Engineering from Kurukshetra 

University, Kurukshetra. His interested areas of 

research are Neural Networks, Mobile computing, 

Network security, and Algorithms. 

Paper ID: SUB154795 2293




