
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Improving the Reliability of the Automation

Framework based on Code Coverage Analysis

Snehalata Giraddi
1
, Merin Meleet

2

1R. V. College of Engineering, VTU University, Information Science and Engineering Department, Vidyaniketan Post, Mysore Road,

Bangalore-560059, India

2R. V. College of Engineering, VTU University, Information Science and Engineering Department,

Vidyaniketan Post, Mysore Road, Bangalore-560059, India

Abstract: Software testing is one of the challenging tasks to select the test inputs. Code coverage is a testing methodology used to

measure the quality of software testing. The objective of code coverage is to ensure the adequateness of testing by providing data on

different code coverage items. Code coverage is a feedback mechanism for agile development or test-driven methodologies. Both of

these methods depend on a developmental feedback that stimulates the addition of features while managing a predictable quality level.

The proposed study suggests that the code coverage anticipations on the test cases effectiveness that professional software developers

write. By having a look at the existing methods; uncovered measurement of code coverage and gaps can be explored further.

Keywords: JaCoCo; Code coverage; SonarQube; Cobertura; Bytecode;

1. Introduction

Code coverage is a metric used to determine the

completeness of software testing, by determining which areas

of source code in an application were exercised during a test.

It provides an efficient way to ensure that applications are not

released with untested code. The developers consider the

code coverage testing as an indicator of confidence level the

software applications [1].The process of code coverage

analysis they need to be automated. It will help the

developers to get an idea regarding the given test suite

throughout the software testing process [5]. Several code

coverage process of testing tools are available to help

researchers and end-users understand the software testing

process [2]. One of such tool is JaCoCo, which is an open

source toolkit which measures and gives the report on Java

programming. This Code coverage report allows developers

easily to get the code which part is not executed by the test

suite.

JaCoCo gives coverage on line and branch. JaCoCo

processes the bytecode while running the code, in contrast to

Clover, it needs to be incremented the source code, and

Cobertura, which processes the bytecode offline. To do this a

Java agent can be configured for the storage process to

collect data in a file and send it to analysis via TCP. The files

can be merged easily from several runs or code parts.

SonarQube Jacoco plugin is the platform for coverage

analysis within the code quality management.

2. Levels of Code Coverage

There are number of ways in which code coverage can be

measured. One of the commonly used methods is to measure

one or a combination of one or more of the following:

function coverage, statement coverage, condition coverage,

branch coverage, and Modified Condition/Decision Coverage

(MC/DC).

2.1 Function Coverage

Function coverage reports whether a function in a program

has been called or not, it gives explanation about which part

of program is executed inside it, and how or why the function

is called. And it does not give indication regarding how many

of the function calls that is made in a program.

Figure 1 shows that function() is called in a program and it

shows that every function should call at least one time in a

program.

Figure 1: Function Coverage

2.2 Statement Coverage

Statement coverage is one of the simplest forms of the code

coverage. It measures the number of lines of code which have

been executed during the execution of the program. This

method does not consider conditional statements or

consideration loops, considers only the statements written

within an executable line [5]. In many of the programming

languages, typically, a semicolon will terminate a statement.

In some cases, multiple lines will be there in a single

statement. The result of what is and is not executed in the

program is given by statement coverage, and it has some

limitations.

Paper ID: SUB154790 2439

http://en.wikipedia.org/wiki/Cobertura
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Atlassian_Clover
http://en.wikipedia.org/wiki/Cobertura

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2.2.1 Statement Coverage Limitations

Consider the following code fragment

Figure 2: Statement Coverage

If „cond‟ condition is true, it is possible to reach 100%

statement coverage. This test case fails the scenario when this

'cond' is false. The program will de-reference a null pointer in

such scenarios. The entry level of code coverage is Statement

coverage and it is also a good practice. Usually the false

condition is also tested.

2.3 Branch Coverage

Branch Coverage measures whether branch points and

decision are tested completely for all possible outcomes. For

example an 'if' statement must take on both “true” and “false”

outcomes to be considered covered [5]. The coverage is

treated as partial if only one of the paths is taken. Same as

Statement Coverage, there are some nuances that need to be

taken care of, lazy evaluation will occur when we work with

various languages. The technique of delay in computation of

parts of code till those are called is known as lazy technique.

2.3.1Branch Coverage Limitations

There is a situation in which „lazy evaluation‟ can occur is

with complex Boolean expressions. The example code is

shown in below:

Figure 3: Branch Coverage

Consider the cases in which 'cond1' is false. Lazy evaluation

is not needed to evaluate 'cond2' or ' function(x)'. The false

coverage will result for 'if (cond1 && (cond2 || function(x)))'.

Consider the cases in which 'cond1' and 'cond2' are both true.

Again, it will result in lazy evaluation in 'function(x)' has not

been evaluated. For the above condition this will also result

in true coverage path. In these scenarios, it is possible to have

99% Branch coverage but still it has defects in the software

framework.

2.4 Modified Condition / Decision Coverage (MC/DC)

MC/DC is a sort of “super branch coverage” and is a very

advanced type of code coverage analysis. It gives report of

true and false of a complex condition as is done in branch

coverage as shown in figure 2, but it will also give report on

true and false of the sub-condition in a complex condition. It

reports the issue given by lazy evaluation, by requiring a

manifestation that each sub condition may affect the result of

the decision that is independent of the other sub condition

results.

Considering the example in Branch Coverage Limitations as

shown in the figure 2, it has to verify 'cond1' for true and

false values while holding 'cond2' and 'function(x)' fixed,

then it has to do the same, for 'cond2' and when holding

'cond1' and 'function(x)' fixed. Ultimately it will verify the

same for 'function(x)', when holding 'cond1' and 'cond2'

fixed. The evaluation of every sub-condition for the values of

'true' and 'false' when holding the other sub-conditions fixed

is known as a modified condition pair.

3. Coverage from Different Types of Testing

Software testing comes in a variety of way:

1. System / Functional Testing: Testing the whole

integrated software application

2. Integration Testing: Testing integrated software sub

systems

3. Unit Testing: Testing a few individual files and classes in

an application

Every project does some amount of system testing where the

source code is stimulated with some of the same actions that

the end users will do. One of the frequent causes of

applications being fielded with the bugs, and therefore the

application in the field experience untested, combinations of

inputs.

Most of the projects do integration testing while some of

them do unit testing. If it had done unit testing or integration

testing [3]. A group of files and single file from the rest of

the applications are isolated by the amount of test code that

has to be created.

At the most rigorous levels of integration test or unit test, it is

common for the amount of application code being tested to

be smaller than the amount of test codes written. As a result,

the levels of testing are involved to business and safety

critical applications in standardized markets, Those are:

medical devices, aviations, railway services, process control,

and soon automotive. Several applications are written for

these industries contain automation software. The structural

testing process for regulated industries often revolves around

testing the high and low-level requirements and analyzing the

code coverage those results from this “requirements based”

testing [3].

On many projects, high-level or functional requirements are

tested first. Code Coverage can be used to capture and report

on the amount coverage achieved. Regrettably, during

functional or system testing it is not possible to get 100%

code coverage. But, we can achieve 55%-65% code coverage

during this type of testing. Using integration testing or unit

testing techniques the remaining 35-45% code coverage will

be achieved.

Paper ID: SUB154790 2440

http://en.wikipedia.org/wiki/Code_coverage

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Unit testing comprises using test code in the fashion of stubs

and drivers to confine specific functions in the application,

and stimulating these functions with the test case. The low

level requirement based test gives you much greater control

over the code being tested and is used to expand the

previously executed system tests and allow you to get to 95%

coverage. For this reason, it is acceptable to be able to share

coverage data from different methods of testing.

4. Challenges of Code Coverage in an

Automation Framework

In the case of code coverage, the price to be paid is the

addition of instrumentation to the source files to be tested.

Instrumentation is the additional source code added to an

application to allow the collection of coverage data as tests

are executed. The overhead associated with instrumentation

translates directly into increased source file and program

size, and indirectly into increased execution time.

It is not possible however, to forecast the precise impact that

instrumentation would have on a particular set of application

files. No algorithm exists for this purpose and none is

possible. Too many variables are involved and every

application is unique in its complexities. It is possible

however, to derive a set of estimates from a representative

example.

5. Conclusion

During the course of this paper, we discussed the advantages

and needs of test automation. This work established the

impact of quality of test automation on the quality of

production code. It provides scope to add tests, remove

redundant tests, improve tests and cover more code, thereby

ensuring higher quality and more reliable systems.

References

[1] D. Nageswara Rao, Dr. M. V. Srinath, P. Hiranmani bala,

“Reliable Code Coverage Technique in Software

Testing”, Proceedings of International Conference on

Pattern Recognition, Informatics and Mobile Engineering,

Feb. 2013

[2] R.Beena, Dr.S.Sarala, “Code Coverage Based Test Case

Selection and Prioritization”, International Journal of

Software Engineering & Applications (IJSEA), Vol.4,

No.6, Nov. 2013

[3] Presitha Arathi M, Nandini V, “A Survey on Test Case

Selection and Prioritization”, Internation journal of

Advanced Research in Computer Science and Software

Engineering, Volume 5, Issue 1, Jan. 2015

[4] Kazunori Sakamoto, Hironori Washizaki, Yoshiaki

Fukazawa, “Open Code Coverage Framework: A

Consistent and Flexible Framework for Measuring Test

Coverage Supporting Multiple Programming Languages”,

International Conference on Quality Software, 2010

[5] David Landoll, Michelle Lange, White Paper on “Code

Coverage Explained”

Author Profile

Snehalata Giraddi is persuing the M.Tech. degree in

Information Technology from R. V. College of

Engineering, Bangalore.

Prof. Merin Meleet is working as Assistant professor

in R. V. College of Engineering, Bangalore in the

department of Information Science and Engineering.

Paper ID: SUB154790 2441

