Diversity of Antipyretic plants in Mizoram, Northeast India

Ramachandra Laha

Department of Botany, School of Life Science, Mizoram University, Aizawl-796004. Mizoram

Abstract: A study of antipyretic plants was made in the state of Mizoram. After the study a total of 25 families were identified from 35 species. It also provides information about the diversity of antipyretic plants in the state. Conservation of antipyretic plants is essential for the future.

Keywords: Diversity, Antipyretic, Plants, Mizoram, Northeast India.

1. Introduction

Fever occurs due to the infection by virus, bacteria, protozoa and other microorganism that produce pyrogen. These pyrogen act on WBC which in turn produce endogenous toxins, they act on the anterior hypothalamus and the body temperature is elevated above 99° F causing fever (Chatterjee 1973). Fever leads to the disturbance in human physiology (Axelrod and Diringer, 2008) metabolism, increase blood pressure, pulse rate, cardiac output, respiration, liver cell damage, cold, cough in our body.

Healthcare and traditional system of medicine are used throughout the world and from centuries have been the original source for most of the drugs (Maurya and Srivastava, 2011). World health organization(WHO) has estimated more than 4000 million people of the world dependent on traditional medicines (Farnsworth *et al.*, 1985). India has centuries old rich heritage of medicinal plant due to diversity in environment for curing human illness. Mizoram (extended between latitude $21^{\circ} 58^{2} - 24^{\circ} 35^{\circ}$ N and $92^{\circ} 15^{\circ}$ to $93^{\circ} 29^{\circ}$ E longitude) is a state in Northeast India and a part of Indo-Burma hotspot of the world. The unique position in the region rich plant diversity due to mountain terrain, altitudinal variation, topographical features, soil charecteristics, climatic factors favours the luxurious growth of plants.

Herbal antipyretic plants used from time immemorial and are favoured over the chemical ones for their compatibility to the human physiological system, easy availability, rich knowledge about the traditional healing system (Sharma *et al.*, 2010). The antipyretic plants are used to eliminate fever (Chettri, 2009) and due to various reasons people are going back to herbal medicine (Graze *et al.*, 2011).

Less attention has been given by the ethnobotanists for exploring the ethnomedicinal diversity of antipyretic plants so this study was done to explore about the antipyretic plants in the region.

2. Material and Methods

The study area confined to the state of Mizoram, Northeast India and the region is inhabitated by different ethnic groups. Regular field trips to different areas of the state was conducted between December, 2013 to January, 2014 covering all seasons and antipyretic plants were collected actively used by the local people. The information on the ethnobotanical uses was gathered from ethnic groups and recorded from the local healers, village old man, women using semi-structured questionaires. The collected plant with local name were identified with the help of flora (Hooker, 1975 and Kanjilal *et al.*, 1984) and standard literatures.

3. Result and Discussion

The study depict the great diversity of antipyretic plants in the region found a total of 35 plant species, distributed among 25 families were identified and documented. The dominant family with the largest number of three species belonged to Asteraceae, Piperaceae followed bv Acanthaceae, Meliaceae, Malvaceae, Rutaceae, Verbenaceae and Zingiberaceae with two species each Apiaceae, Apocyanaceae, Cucurbitaceae, Cyperaceae, Labiateae, Liliaceae, Magnoliaceae, Menispermaceae, Mimosaceae, Myrsinaceae, Musaceae, Plantiginaceae, Rosaceae. Rubiaceae, Saxifragnaceae, Solanaceae, Umbelliferae with one species each (Table 1, Figure 1). The status on the habit of the antipyretic plants depict the dominant species herbs followed by trees, shrubs and climbers as such herb (12 species) 34%, tree (11 species) 32%, shrub (6 species) 17% and climber (6 species) 17% (Table 1, Figure 2).

The study on the plant part(s) used for the procurement of the ingredient show that the most preferred form of use is leaf (11 species) 28%, followed by root (8 species) 20%, fruit (5 species) 13%, whole plant (4 species) 10%, bark (4 species) 10%, stem (2 species) 5%, rhizome (2 species) 5%, bulb (1 species) 3%, flower (1 species) 3% and seed (1 species) 3% (Table 1,Figure 3). The ethnobotanical usage that is method of formulation of crude drug preparationis concerned show that the most preferred form of use is decoction (23 species) 64%, fresh (5 species) 14%, infusion (3 species) 8%, powder (3 species) 8% and paste (2species) 6% (Table 1,Figure 4).

4. Conclusion

The study revealed that the ethnic peoples of study area used traditional medicinal plants for treatment of fever. The world is witnessing the resurgence of herbal system of medicine. The ethnomedicinal plants having antipyretic activity should be subjected to clinial investigation Proper regulatory mechanism is recommended to ensure safety and efficacy of

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

herbal product. The herbal heritage must be protected for future which may ultimatey lead to the development of new molecule for human health as well as national economy. There is an urgent need to formulate suitable strategies for conservation of these ethnobotanical heritage by domestication and cultivation.

5. Acknowledgement

The work was supported by Department of Biotechnology, Govt. of India.

Table 1: Antipyretic plants with local name, family, habit, part(s) used and ethnobotanical usage					
Botanical name	Local name	Family	Habit	Part(s) used	Ethnobotanical usage
Adhatoda vasica Nees	Kawldawi	Acanthaceae	Shrub	Leaf/root	Decoction
Ageratum conyzoides L.	Vailenhlo	Asteraceae	Herb	Stem	Decoction
Allium sativum L.	Purunvar	Liliaceaa	Herb	Bulb	Fresh
Alstonia scholaris R.B.	Thuamriat	Apocyanaceae	Tree	Bark	Infusion
Andrographis paniculata Nees.	Hnakhuapui	Acanthaceae	Herb	Whole plant	Decoction
Ardisia colorata Roxb.	Hnuthlum	Myrsinaceae	Tree	Bark	Decoction
Artemisia indica Wild.	Sai	Asteraceae	Shrub	Leaf	Paste
Azadirchta indica A.Juss.	Nimthing	Meliaceae	Tree	Leaf	Decoction
Bergenia ligulata (Wall) Engl.	Pandamdawi	Saxifragaceae	Herb	Root	Decoction
Centella asiatica (L.) Urban	Hnabial	Umbelliferae	Herb	Whole plant	Decoction
Chukrassia tabulsris A.Juss	Zawngtei	Meliaceae	Tree	Fruit	Decoction
Citrus sinensis L.	Serthlum	Rutaceae	Tree	Leaf	Decoction
Clerodendron serratum Spreng	Phuhnamsreh	Verbenaceae	Shrub	Root	Decoction
Cucurma longa L.	Aieng	Zingiberaceae	Herb	Rhizome	Decoction
Gossypium arboreum L.	La	Malvaceae	Shrub	Root	Decoction
Hedyotis scadeus Roxb.	Laikingtuibur	Rubiaceae	Shrub	Root/Leaf	Decoction
Hydrocotyle javonica Thub.	Hlovaidawr	Apiaceae	Herb	Whole plant	Decoction
Kyllinge monocephala Roxb.	Artelubawk	Cyperaceae	Herb	Root	Decoction
Michella champaca L.	Nghau	Magnoliaceae	Tree	Flower/Fruit	Decoction
Mikania micrantha Kunth.	Japanhlo	Asteraceae	Climber	Leaf	Decoction
Momordica charantia L.	Changkha	Cucurbitaceae	Climber	Leaf	Fresh
Musa superba Roxb.	Tumbu	Musaceae	Tree	Fruit	Decoction
Ocimum sanctum L.	Lalram	Labiatae	Herb	Leaf	Fresh
Parkia roxburghii D.Don	Zawngtah	Mimosaceae	Tree	Root	Decoction
Piper beetle L.	Panruang	Piperaceae	Climber	Leaf	Fresh
Piper longum L.	Vokohuli	Piperaceae	Climber	Fruit	Infusion
Piper nigrum L.	Thinghmarcha	Piperaceae	Climber	Fruit	Powder
Plantago major L.	Kelbaan	Plantiginaceae	Herb	Whole plant	Decoction
Prunus cerasoides D.Don	Tlaizawng	Rosaceae	Tree	Bark	Decoction
Solanum violaceum L.	Samtawk	Solanaceae	Herb	Root	Decoction
Tinospora sinensis (Lour.)Merr.	Vankaihrul	Menispermaceae	Climber	Stem	Infusion
Urena lobata L.	Schnnep	Malvaceae	Shrub	Leaf	Decoction
Vitex peduncularis Wall ex Schauer	Thingkikawila	Verbenaceae	Tree	Leaf/Bark	Paste/Powder
Zanthoxylum armatum Roxb.	Arhikveh	Rutaceae	Tree	Seed	Powder
Zingiber officinale Rosc.	Sawhthing	Zingiberaceae	Herb	Rhizome	Fresh

Figure 1: Family wise distribution of plants

Paper ID: SUB154730

Volume 4 Issue 5, May 2015 www.ijsr.net Licensed Under Creative Commons Attribution CC BY

Figure 2: Habit of the plants with percentage

Figure 3: Number of different plant parts used

Figure 4: Ethnobotanical usage with percentage

References

- Axelrod, Y. K. and Diringer, M. N. Temperature management in acute neurological disorders. Neurologic Clinics. 2008, 26 (2): 585-603.
- [2] Chattarjee, C. C. Human physiology Vol. II, New Central Book Agency, Kolkata, India. 1973.

- [3] Chettri, D. R. Medicinal plants used as antipyretic agents by the traditional healers of Darjeeling Himalaya. Indian Journal of Traditional Knowledge. 2009, 3 (3):271 – 274.
- [4] Farnsworth, N. R., Akerete, U., Binjal, A.S., Soejarto, D. D and Guo, Z. Medicinal Plant in therapy. Bull. World Health Organization 1985, 63(6):965-981.
- [5] Graz, B., Kitua, A. U and Malebo, H. M. To what extent can traditional medicine contribute a complementary or alternative solution to malaria control programme.Malaria 2011, 10 (Suppl.) S6 http://www.malariajournal.com/content/10/S1/S6.
- [6] Hooker, J. D. The flora of British India. Vol.1 VII, L. Reeve, Co. London. UK 1975.
- [7] Kanjilal, U. N., Kanjilal, P. C and Das, A. Flora of Assam. Vol.1-V Avon Book Company, Delhi.1982.
- [8] Maurya, U. and Srivastava, S.Traditional India Herbal Medicine used as antipyretic, antiulcer, antidiabetic and anticancer. A Review International Journal of Research in Pharmacy and Chemistry. 2011,1 (4): 1152 – 1159.
- [9] Sharma, J. P., Srivastava, A., Thakur, S. P., Barpeta, P. K and Singh, S. Herbal medicine as antipyretic: A comprehensive review. International Journal of Pharmacy and Lifesciences. 2010, 1(1): 18 -22.

Author Profile

Ramachandra Laha received his PhD degree from Mizoram University in Forestry in 2003. Presently, he is Professor and Dean, School of Life Science, Mizoram University. His research interests are Biodiversity, Regeneration, Molecular Biology.