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Abstract: In this paper we consider identification and estimation of a nonparametric location scale model. We first use the truncated 

data. Then we use truncated regression model. Truncated regression is used to model dependent variables for which some of the 

observations are not included in the analysis because of the value of the dependent variable. In the latter case we propose a simple 

estimation procedure based on combining conditional quantile estimators for three distinct quantiles. The new estimator is shown to 

converge at the optimal nonparametric rate with a limiting normal distribution. A small scale simulation study indicates that the 

proposed estimation procedure performs well in finite samples. We also present an empirical application on GATE Program using 

example data test. 
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1. Introduction 
 

The nonparametric location-scale model is usually of the 

form: 

 
where xi is an observed d−dimensional random vector and єi 

is an unobserved random variable, distributed independently 

of xi, and assumed to be centered around zero in some sense. 

The functions μ(·) and σ(·) are unknown. In this paper, we 

consider extending the nonparametric location-scale model 

to accommodate censored data. The advantage of our 

nonparametric approach here is that economic theory rarely 

provides any guidance on functional forms in relationships 

between variables. To allow for censoring, we work within 

the latent dependent variable framework, as is typically done 

for parametric and semiparametric models. We thus consider 

a model of the form: 

 

where  is a latent dependent variable, which is only 

observed if it exceeds the fixed censoring point, which we 

assume without loss of generality is 0. We consider 

identification and estimation of μ(xi) after imposing the 

location restriction that the median of єi = 0. We emphasize 

that our results allow for identification of μ(xi) on the entire 

support of xi. This is in contrast to identifying and 

estimating μ(xi) only in the region where it exceeds the 

censoring point, which could be easily done by extending 

Powell’s(1984) CLAD estimator to a nonparametric setting. 

One situation is when the data set is heavily censored. In this 

case, μ(xi) will be less than the censoring point for a large 

portion of the support of xi, requiring estimation at these 

points necessary to draw meaningful inference regarding its 

shape. Our approach is based on a structural relationship 

between the conditional median and upper quantiles which 

holds for observations where μ(xi)≥0. This relationship can 

be used to motivate an estimator for μ(xi) in the region 

where it is negative. Our results are thus based on the 

condition 

 
where PX(·) denotes the probability measure of the random 

variable xi. 

 

The paper is organized as follows. The next section explains 

the key identification condition, and motivates a way to 

estimate the function μ(·) at each point in the support of xi. 

Section 3 introduces the new estimation procedure and 

establishes the asymptotic properties of this estimator when 

the identification condition is satisfied. Section 4 considers 

an extension of the estimation procedure to estimate the 

distribution of the disturbance term. Section 5 explores the 

finite sample properties of the estimator through the results 

of a simulation study. Section 6 presents an empirical 

application STIFIN test, in which we estimate the survivor 

function in the region beyond the censoring point. Section 7 

concludes by summarizing results. 

 

2. Censored and Truncated Data : Comparison 

Definitions 
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3. Estimation Procedure and Asymptotic 

Properties 
 

3.1 Estimation Procedure 

 

In this section we consider estimation of the function μ(·). 

Our procedure will be based on our identification results in 

the previous section, and involves nonparametric quantile 

regression at different quantiles and different points in the 

support of the regressors. Our asymptotic arguments are 

based on the local polynomial estimator for conditional 

quantile functions introduced in Chaudhuri(1991a,b). For 

expositional ease, we only describe this nonparametric 

estimator for a polynomial of degree 0, and refer readers to 

Chaudhuri(1991a,b), Chaudhuri et al.(1997), Chen and 

Khan(2000,2001), and Khan(2001) for the additional 

notation involved for polynomials of arbitrary degree. 

 

First, we assume the regressor vector xi can be partitioned as 

(xi
ds

,x
c
) where the dds−dimensional vector xi

ds 
is discretely 

distributed, and the dc-dimensional vector xi
c
 is continuously 

distributed. We let Cn(xi) denote the cell of observation xi 

and let hn denote the sequence of bandwidths which govern 

the size of the cell. For some observation xj , j ≠ i, we let xj ϵ 

Cn(xi) denote that xj
(ds)

=xi
(ds)

 and xj
©
 lies in the dc-

dimensional cube centered at xi
c
 with side length 2hn. 

 

Let I[·] be an indicator function, taking the value 1 if its 

argument is true, and 0 otherwise. Our estimator of the 

conditional α
th

 quantile function at a point xi for any α ϵ (0, 

1) involves α-quantile regression (see Koenker and Bassett 

(1978)) on observations which lie in the defined cells of xi. 

Specifically, let θ minimize: 

 
 

Our estimation procedure will be based on a random sample 

of n observations of the vector (yi,xi
’
)
’
 and involves applying 

the local polynomial estimator at three stages. Throughout 

our description, ˆ· will denote estimated values. 

 

1) Local Constant Estimation of the Conditional Median 

Function. In the first stage, we estimate the conditional 

median at each point in the sample, using a polynomial of 

degree 0. We will let h1n denote the bandwidth sequence 

used in this stage. Following the terminology of Fan(1992), 

we refer to this as a local constant estimator, and denote the 

estimated values by ˆq0.5(xi). Recalling that our 

identification result is based on observations for which the 

median function is positive, we assigns weights to these 

estimated values using a weighting function, denoted by 

w(·). Essentially, w(·) assigns 0 weight to observations in 

the sample for which the estimated value of the median 

function is 0, and assigns positive weight for estimated 

values which are positive. 

 

2) Weighted Average Estimation of the Disturbance 

Quantiles In the second stage, the unknown quantiles cα1 , 

cα2 are estimated (up to the scalar constant _c) by a weighted 

average of local polynomial estimators of the quantile 

functions for the higher quantiles α1, α2. In this stage, we 

use a polynomial of degree k, and denote the second stage 

bandwidth sequence by h2n. 

We let ˆc1, ˆc2 denote the estimators of the unknown 

constants  and define them 

as: 

 
where τ(xi) is a trimming function, whose support, denoted 

by Xτ , is a compact set which lies strictly in the interior of 

X. The trimming function serves to eliminate“boundary 

effects” that arise in nonparametric estimation. We use the 

superscript (p) to distinguish the estimator of the median 

function in this stage from that in the first stage. 

 

3) Local Polynomial Estimation at the Point of Interest 

Letting x denote the point at which the function μ(·) is to be 

estimated at, we combine the local polynomial estimator, 

with polynomial order k and bandwidth sequence h3n, of the 

conditional quantile function at x using quantiles α1, α2, 

with the estimator of the unknown disturbance quantiles, to 

yield the estimator of μ(x): 

 
 

4. Estimating the Distribution of ϵi 
 

As mentioned in Section 2, the distribution of the random 

variable ϵi is identified for all quantiles exceeding α0≡ inf{α: 

supxϵX qα(x) > 0}. In this section we consider estimation of 

these quantiles, and the asymptotic properties of the 

estimator. Estimating the distribution of ϵi is of interest for 

two reasons. First, the econometrician may be interested in 

estimating the entire model, which would require estimators 

of σ(xi) and the distribution of ϵi as well as of μ(xi). Second, 

the estimator can be used to construct tests of various 

parametric forms of the distribution of ϵi, and the results of 

these tests could then be used to adopt a (local) likelihood 

approach to estimating the function μ(xi). 

 

Before proceeding, we note that the distribution of ϵi is only 

identified up to scale, and we impose the scale normalization 

that c0.75 − c0.25 ≡ 1. We also assume without loss of 

generality that α0 ≤ 0.25. To estimate cα for any α≥α0, we let 

α- = min(α, 0.5) and define our estimator as 

 
The proposed estimator, which involves averaging 

nonparametric estimators, will converge at the parametric ( 

√n) rate and have a limiting normal distribution, as can be 
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rigorously shown using similar arguments found in Chen 

and Khan(1999b). 

 

5. Truncated Regression 

 

 

 

 
 

6. Application to GATE Program 
 

A study of students in a special GATE (gifted and talented 

education) program wishes to model achievement as a 

function of language skills and the type of program in which 

the student is currently enrolled. A major concern is that 

students are required to have a minimum achievement score 

of 40 to enter the special program. Thus, the sample is 

truncated at an achievement score of 40. 

 

Summary for variables: achiv 

 by categories of: prog (type of program) 

 

 prog | N mean sd 

---------+------------------------------ 

 general | 40 51.575 7.97074 

academic | 101 56.89109 9.018759 

vocation | 37 49.86486 7.276912 

---------+------------------------------ 

 Total | 178 54.23596 8.96323 

---------------------------------------- 

 

 type of | 

 program | Freq. Percent Cum. 

------------+----------------------------------- 

 general | 40 22.47 22.47 
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 academic | 101 56.74 79.21 

 vocation | 37 20.79 100.00 

------------+----------------------------------- 

 Total | 178 100.00 

Fitting full model: 

 

Iteration 0: log likelihood = -598.11669  

Iteration 1: log likelihood = -591.68374  

Iteration 2: log likelihood = -591.31208  

Iteration 3: log likelihood = -591.30981  

Iteration 4: log likelihood = -591.30981  

 

 

In the table above, we can see that the expected mean of 

avchiv for the first level of prog is approximately 49.79; the 

expected mean for level 2 of prog is 53.85; the expected 

mean for the third level of prog is 48.65. 

Marginsplot 
 

 
 

7. Conclusion 
 

In the output above, we can see that the expected mean of 

avchiv for the first level of prog is approximately 49.79; the 

expected mean for level 2 of prog is 53.85; the expected 

mean for the third level of prog is 48.65. 
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