
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Implementation and Analysis of DoS Attack

Detection Algorithms

Rupesh Jaiswal
1
, Dr. Shashikant Lokhande

2
, Aditya Gulavani

3

1Assistant Professor, Dept. of E&TC, Pune Institute of Computer Technology, Pune, India

2Prof., Dept. of E&TC, Sinhgad College of Engineering, Pune, India

3Student, Dept. of E&TC, Pune Institute of Computer Technology, Pune, India

Abstract: Intrusion detection systems have been traditionally classified in three categories viz. Signature Based IDS, Anomaly Based

IDS and Hybrid IDS. Each one of these have their own advantages and disadvantages. The anomaly based IDS can detect novel attacks

without knowing the actual payload contents if tuned correctly. Anomaly based IDS depends on the rate of data packets at the interface.

But the main drawback of using anomaly based IDS is it can produce large number of false positives. The signature based IDS while

not producing false positives cannot detect new attacks until its database is updated. The hybrid IDS combines features of both the

anomaly based and signature based IDS. In this paper, we discuss the implementation of the each type the IDS. And also we measure

the performance of the IDS based on RAM utilization and shows that out detection algorithm consumes less RAM compared to

SNORT. Other parameters of analysis are left for future research work.

Keywords: IDS, DDoS, Attack, Anomaly.

1. Introduction and Related work

Denials of service attacks are network attacks that intend to

block access to legitimate traffic [1]. This is usually done by

flooding the server by sending huge number of illicit

requests. So when a user tries to access the server, he might

not get the service as the server is flooded with packets from

hostile elements. If computers are hacked and then if they are

used to send attack traffic to the server, the type of attack is

called as DDoS (Distributed Denial of Service) attack. These

kinds of attacks are relatively new.

The ubiquity in use of internet has made it mandatory to for

network administrators to keep a tab on hostile elements who

pose a direct threat to the function of the network as a whole.

With a lot of products already in market to counter the DoS

attack, we in this paper try to do a comparative study of the

basic algorithm used in the three types of IDS [2] namely -

Anomaly based [5], Signature based [6-8] and Hybrid IDS

[3].

Ids can be host based (HIDS) or network based (NIDS).

HIDS uses the data from host operating system as the main

source of input to detect malicious activity [9-10], whereas

NIDS uses its attack detection mechanism based on network

traffic monitoring [11-12].

The algorithm used for detecting Intrusion should be fool

proof, for the simple reason that it is the first step towards

preventing attacks on the network i.e. an IDPS. The basic

function of IDS is to scan the packets at the network interface

of its host and determine whether or not the incoming traffic

is an attack or not. It is for these decisions making the

different algorithms are employed. An attack can be

characterized in various ways - it may be the content or

illegal combination of flags or the statistical data available

from various packets.

The algorithm packet header anomaly detection [13] uses the

statistical data extracted from the time stamps of two

consecutive similar packets and uses mathematical modelling

of the same to determine the attack. The signature based

approach uses the actual data contents in the payload or

specific header combinations to match with an existing

known attack signature. The Hybrid Algorithm [14] uses both

-the statistical calculation and the signature matching to

detect an attack.

The rest of this paper is organized as follows. We discuss

each of the aforementioned algorithms section wise. Section

II describes Signature Based IDS and its implementation;

Section III discusses Anomaly Based IDS and its

implementation; Section IV describes Hybrid IDS. Section V

ends with the result analysis and discussion.

2. Signature Based IDS

As mentioned earlier, a signature based IDS [4] uses the data

content in the packet to match with an existing known

signature. If a match is found, we know that an attack is

going on. And since each attack is going to have its own

signature, we can also detect the type of attack. Now,

signature of an attack may imply the data content, invalid flag

combinations (in case of TCP), specific port numbers or in

some cases invalid fields of the IP packet. We will first see

the implementation of the IDS. The basic algorithm for

implementation of any IDS includes capturing the packets

and then applying the detection technique. In case of

signature based IDS, we first capture packets and then

implement the string matching algorithm.

2.1 Implementing Packet Capture at Interface

Capturing packets from an interface can be done in various

ways viz. using winpcap (for Windows OS), pcap (for Linux

Paper ID: SUB154678 2085

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

OS) or using libpcap and writing a program to capture the

packets. Linux OS provides pcap.h under the libpcap library.

The detailed documentation of pcap.h can be found in

reference [insert number here]. pcap.h provides various

functions to access, capture on, handle and filter on a

specified interface. Some useful functions are described here.

pcap_lookupdev() returns a reference to a string containing

the name of a network device which can be used with

pcap_open_live() and with pcap_lookupnet().

pcap_open_live() is used to get a packet capture handle to

capture and analyze packets on the network. pcap_compile()

is used to compile the string str into a filter program.

pcap_loop() processes packets from a live capture until count

packets are processed. Using these functions, we can access

and open an interface to capture packets. Now, we save the

captured packets in a dump file. This dump file will be

accessed again during the string matching stage of the

algorithm.

2.2 Implementing String Matching Algorithm

There are a number of string matching algorithms for

searching a substring in a string. For a time constrained

application like this, we need an algorithm that can perform

string matching with the least possible time complexity. The

Boyer-Moore algorithm is the most widely used string

matching algorithm. It is considered to be the fastest

algorithm for string matching. Horspool’s algorithm (also

referred to as Boyer-Moore-Horspool algorithm) is a reduced

version of the Boyer-Moore algorithm that reduces the space

complexity in trade of time complexity. We will see the

implementation of this algorithm in detail.

This algorithm carries out the matching from right to left.

This algorithm uses a bad match table. This bad match table

tells how many characters are to be shifted or skipped for the

next iteration. In naive algorithm, we shift by just one

character. It has been shown that we can skip a certain

number of characters to improve the time complexity of the

algorithm. Now, the bad match table has in its simplest form,

two columns. First column has the character from the

substring and the second column has the respective shifts.

Whenever a bad match occurs, the bad match table is

consulted and corresponding characters are skipped. The bad

match table is constructed by using the following algorithm:

for(i = 0; i < substring.length; i++)

 bmtable[substring[i]] = substring.length – i – 1;

Bad match table for the word “TRUTH” is shown in table1.

Table 1: Bad match table for the word “TRUTH”
Index Shift

T 1

R 3

U 2

? 5

The basic idea of using the bad match table is, whenever a

bad match occurs at a character not present in the substring,

we will not have to check all the characters in the remaining

substring. So, we can shift straight away by length of the

substring. An example is shown in Table 2.

2.3 Signature Database

We need to have a database of all the attack signatures to

match them with the packets captures. We managed to

procure a handful of signatures from snort IDS [8]. These

signatures are used as the primary signatures for attack

detection. Also, we have gathered a few tools for simulating

DoS attacks. Using these attack tools and analyzing the

packets, we also added some more signatures of our own.

Table 2: String Matching for word “TRUTH”

2.4 Implementation of IDS Algorithm

Now that we have seen packet capture, string matching

algorithm and signature database we are ready to implement

our signature based intrusion detection system. First, we will

see the basic algorithm and the flow of operations and then

we will see the method of implementation.

Note that the packet capture program and string matching

program have to be separate programs to avoid dropping

packets. Initially, the packet capture program is running.

After a certain packet are captured (number of packets set by

the user), the packet capture program invokes the string

matching program for the first time. At this point, the packet

capture program changes the dump file so that string

matching can be carried out on the previous file.

Again after packet capture, the program changes dump file

and sets a mutex variable. The string matching program

which was invoked previously, now waits for the mutex to be

set. Once set, it checks to attacks. This process continues.

The number of dump files to be created depends on the

traffic rate and can be set by the user.

Paper ID: SUB154678 2086

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

To invoke other programs, Linux provides two important

functions – fork() and exec(). Each process has its own

process ID, referred to as PID here onwards. fork() is a

system call that makes a copy of the current process in

execution in a different address space. So, now there are two

exactly identical processes running in parallel. The only

difference between these two processes is their PID. The

parent process in which fork() was called retains its PID and

the new born process called the child gets 0 as its PID. The

exec() function replaces the process in which it is called with

the process whose path is provided to it as an argument.

Since we had two similar processes, we can replace the child

with the string matching program. Now, our programs,

packet capture and string matching are running in parallel.

This is the complete implementation of the signature based

IDS.

3. Anomaly Based IDS

In the anomaly based detection the IDS is tuned to normal

traffic conditions. It does so by keeping a database of various

fields of the normal traffic. When the IDS is made to function

in a real time environment, it checks for anomalies in the

incoming traffic with respect to the database it has created

while learning.

3.1 Choice of Fields for Detection

The choice of the fields for detecting attacks is at the

discernment of the designer. The most commonly used fields

are those of the IP address and port numbers. The use of

increased number of fields will obviously reduce the number

of false positives but in turn also increase the memory and

training overheads required for the IDS to function. For this

paper we take into consideration some fields like Type of

Service, Source port, IP address, Destination Port, Header

Length etc. There may be many fields that do not generate

anomaly even in the event of an attack which means that the

attack packets and normal traffic has same characteristics

when compared with respect to those fields.

To improve on the results obtained we can keep a threshold

level for the rate of attack packets. This allows us to reduce

the number of false positives. But this on the other hand will

require more precise tuning in its training mode and addition

of another parameter with every field in its database. One of

the common parameters used is the time stamp between two

consecutive packets of the same type. This can be used to

calculate the rate of incoming packets with from a specific

source or of the same type.

3.2 Training Mode

The training mode includes training the IDS under an attack

free environment for a sufficiently long time. The training

mode makes the IDS aware of what is considered to be

normal. Values and thresholds of parameters for various

fields are calculated during this period. Many a times an

anomaly occurs due to certain changes in the hardware of the

network. Such kinds of anomalies are non-recurring in

nature.

We use 20 different fields for detection of anomalies in the

data packet at the interface. Some of the values of the

common fields are listed in the table for reference. The more

exhaustive the training will be the less the number of false

outputs during the detection mode. The use of machine

learning to compute a mathematical model will increase the

speed at run time but will have higher training and pre-

processing overheads for the same.

The system training should be done on various types of

traffic like FTP, HTTP etc. This would be helpful in reducing

the number of false positives and give a more faithful result

when run on the host network because when the system is

installed on the network it will counter all sorts of traffic and

the attack may be in any form.

3.3 Detection Mode

The functioning mode of the IDS is known as the detection

mode. It captures data packets at the interface and computes

the statistical data. It then cross-verifies the obtained data of

each field during run time with acceptable value or thresholds

of parameters. When an attack occurs it gives values other

than the trained values and thus an attack is detected. The

event may be classified as an attack due to anomaly in any of

the fields. For example the rate of a specific packet from the

same source may be higher than the acceptable value or the

number of packets from a specific source in a time frame may

be higher than the trained set.

3.4 Implementation of IDS Algorithm

We capture each data packet at a given interface by using the

functions defined in the pcap.h like pcap_loop(),

pcap_open_live() and pcap_compile(). We need to define

structures according to different headers in the protocol

stack. We can thus extract the headers from data packets

because the headers are to be of known length for each

protocol. The protocol can be known by reading the IP. A

sample packet header for IGMP header in C programming is

shown:

struct igmphdr

 {

 u_char type;

 u_char code;

 u_short checksum;

 u_int identifier;

 u_int multi_addr;

 u_int access1;

 u_int access2;

};

We then use data types according to the length of field.

For example unsigned char for 8bit, 32 for unsigned int and

then type cast in C to view the same in the required format.

When running the data packets are captured over a time

frame and the statistics are computed. The statistics at

runtime are then compared with the normal traffic conditions

and thresholds defined during the training and if they are

found to be higher than the attack is said to be underway and

the network administrator is alerted for the same.

Paper ID: SUB154678 2087

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4. Hybrid IDS

Anomaly and Signature based detection system are combined

to form hybrid detection system, where the advantages of

both are taken into use. The anomaly based algorithm is used

to detect novel attacks which are not possible by the

signature based approach.

The hybrid detection algorithm also has the scope of

incorporating machine learning/ self-learning during run time

because feedback from detection of new attacks can be taken

and used to define the rule sets for detection using signature

based algorithm. This increases the utility of the same and is

generally the preferred algorithm over the earlier two

algorithms for the sheer improvement of performance over

the others.

Even though the Hybrid based Intrusion Detection

theoretically may be a stronger system but they may not

always be the better suited for all sorts of scenarios. Hybrid

based IDS may have the issues of integration because it has

the need of various technologies to interoperate successfully

and efficiently.

5. Result Analysis and Discussion

Signature Based IDS has some glaringly evident

shortcomings in the form of its inability to detect new

attacks. Also little deviation in the attack packet can also lead

to it not detecting the minor tweaked attacks. So it has to be

updated with the latest database every now and then to keep

up to the emerging attacks. However the signature based

gives very accurate results in the form of almost no false

positives. Also it is easier to design and does not need

training like in the case of anomaly based detection.

Anomaly based IDS has the drawback of giving vague results

when it comes to detecting attacks. It gives pretty much

number of false positives which may lead to dropping of

legitimate traffic packets. It also needs to be trained at the

node of the network where it is to be used. Higher level of

Manual intervention is not needed like in the case of

Signature based detection because updates aren’t generally

required in this case. And one of the biggest pros of the

anomaly based system is the detection of new attacks, which

is not possible in any other system.

Hybrid based detection has the advantages of anomaly in

detecting new attacks but can fall short on the ease of

designing such a system because for the interoperability of

discrete systems and to integrate it to one is a pretty difficult

task and also the resources needed for the same will be pretty

higher as compared to the other two.

5.1 Metrics

Any system’s performance has to be measured with certain

metrics to have a thorough comparison and the efficiency of

a system will thus be known with respect to others. Two of

very important metrics for performance analysis are the

resources of the host needed and the number of false

positives or negatives.

5.2 Resources Needed

This includes all sorts of resources needed by the system to

run successfully on the host machine. This may be the

minimum free RAM, number of files written or sent over the

network, specific library headers, ROM space etc. Here are

some graphs showing the RAM usage of different algorithm

plotted in linux with respect to time. Snort, an established

and widely used IDS for UNIX and Windows takes about

average of 352 MB of RAM while signature based algorithm

designed takes lowest resources with the maximum resources

utilized on the y axis peaking when both the string matching

and packet capturing are running simultaneously. However

the total space on ROM required in much higher than the

anomaly based detection technique because of the database

of the known signatures and the rule set has to be stored in a

file on the host.

Figure 1: Average Memory usage in Signature based IDS

during simultaneous packet capture and pattern matching.

Figure 2: Average Memory usage in Anomaly IDS during

training process for two parameter calculation

The Anomaly based detection algorithm requires higher

resources due to computation of statistics of the various

parameters pertaining to attack detection. The higher the

number of parameters calculated for the same the higher will

be the RAM required. The executable code section of the

anomaly based detection is much higher. Snort on the other

hand is a comprehensive IDS which encapsulates many types

of attacks and illegitimate traffic, thus requiring much higher

RAM than the designed IDS.

Paper ID: SUB154678 2088

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3: Average Memory usage by Snort IDS

5.3 False Positives and Negatives

False positive is an event where in an attack is detected even

in the case of the incoming traffic not being hostile. This

degrades the performance of the IDS because it sends control

signals to the IDPS unit to drop such packets. A False

Negative on the other is the event of the system not detecting

an attack even if the attack is underway. This is a more

dangerous situation and poses a great threat to the security of

the host. The performance can be evaluated with well-known

parameters like TP, TN, FP, FN, Precision, Recall, and

Accuracy.

Precision (P)= TP / (TP+FP),

Recall (R) = TP / (TP+FN),

Accuracy (A) = (TP+TN) / (TP+TN+FP+FN).

A Signature based approach has no false positives because it

gives pretty accurate results when it comes to known attacks.

On the other hand in the event of new attacks, the false

negative count increases greatly unless the database is

updated. Unless there is machine learning or feedback of

some sort involved the Signature based approach does not do

justice to Intrusion detection in a real time scenario.

The anomaly based detection system has a relatively higher

number of false positives because generally the threshold

levels are set in a conservative manner to negate the threat

posed in false negatives. The number of false positives in an

anomaly based system is dependent on various factors like

the parameters used, thresholds set during the training period

etc.

6. Conclusion and Future Work

With the increase in use of internet in the day to day world,

data security and threat management becomes an important

issue. The basic requirement for any threat management unit

is the detection block. The implementation and design of

various algorithms becomes an important issue in the

detection.

Two of the three algorithms were implemented and tested on

real time emulated attacks. The memory resource is used as

metrics to determine the performance and efficiency of the

system. Average RAM utilization while attack detection is

5.025 MB for Signature based 7.0125 MB for Anomaly and

352 MB for SNORT IDS. Other performance parameters are

left for future work. Also probabilistic approach can be used

for intrusion detection in future which may surely consume

least resources compared to other approaches. A trade off

was seen to be established between the resources required

and the efficiency of the system. Each algorithm has its own

pros and cons, each being suitable for different types of

environment and requirements.

References

[1] J. Mirkovic and P. Reiher, "A taxonomy of DDoS attack and

DDoS defense mechanisms," ACM SIGCOMM Computer

Communication Review, vol. 34, pp. 39-53, 2004.

[2] D. Wagner and P. Soto, "Mimicry attacks on host-based

intrusion detection systems," 2002, pp. 255-264.

[3] H. Debar, M. Dacier, and A. Wespi, "Towards a taxonomy of

intrusion-detection systems," Computer Networks, vol. 31, pp.

805- 822, 1999.

[4] F. Dressler, G. Munz, and G. Carle, "Attack detection using

cooperating autonomous detection systems (CATS),"

Wilhelm- Schickard Institute of Computer Science, Computer

Networks and Internet, 2004.

[5] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez, and

E. Vazquez, "Anomaly-based network intrusion detection:

Techniques, systems and challenges," computers & security,

vol. 28, pp. 18-28, 2009.

[6] L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J.

Wood, and D. Wolber, “A network security monitor. In

Research in Security and Privacy”, 1990. Proceedings. 1990

IEEE Computer Society Symposium on, 1990.

[7] V. Paxson. Bro: a system for detecting network intruders in

real-time. Computer networks, 1999.

[8] M. Roesch, “Snort-lightweight intrusion detection for

networks”, In Proceedings of the 13th USENIX conference on

System administration, 1999.

[9] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T.

Heberlein, C.- L. Ho, K. N. Levitt, B. Mukherjee, S. E. Smaha,

T. Grance, “Dids (distributed intrusion detection system)-

motivation, architecture, and an early prototype”, In

Proceedings of the 14th National Computer Security

Conference, 1991.

[10] S. Kumar and E. H. Spa_ord, “A pattern matching model for

misuse intrusion detection”, IEEE proceedings, 1994.

[11] K. Wang, G. Cretu, and S. Stolfo, “Anomalous payload-based

worm detection and signature generation”, In Recent Advances

in Intrusion Detection, 2004.

[12] V. Paxson, “Bro: a system for detecting network intruders in

real-time”, Computer networks, 1999.

[13] M. Mahoney and P. Chan. Learning non stationary models of

normal net- work track for detecting novel attacks. In

Proceedings of the eighth ACM SIGKDD international

conference on Knowledge discovery and data mining, 2002.

[14] Yu-Xin Ding, Min Xiao, Ai-Wu Liu, “Research And

Implementation On-Snort-Based Hybrid Intrusion Detection

System” Proceedings of the Eighth International Conference

on Machine Learning and Cybernetics, Baoding, 12-15July

IEEE, 2009.

Paper ID: SUB154678 2089

