
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Study on Setting Processor or CPU Affinity in

Multi-Core Architecture for Parallel Computing

Saroj A. Shambharkar,

Kavikulguru Institute of Technology & Science, Ramtek-441 106, Dist. Nagpur, India

Abstract: Early days when we are having Single-core systems, then lot of work is to done by the single processor like scheduling

kernel, servicing the interrupts, run the tasks concurrently and so on. The performance was may degrades for the time-critical

applications. There are some real-time applications like weather forecasting, car crash analysis, military application, defense

applications and so on, where speed is important. To improve the speed, adding or having multi-core architecture or multiple cores is

not sufficient, it is important to make their use efficiently. In Multi-core architecture, the parallelism is required to make effective use

of hardware present in our system. It is important for the application developers take care about the processor affinity which may affect

the performance of their application. When using multi-core system to run an multi threaded application, the migration of process or

thread from one core to another, there will be a probability of cache locality or memory locality lost. The main motivation behind

setting the processor affinity is to resist the migration of process or thread in multi-core systems.

Keywords: Cache Locality, Memory Locality, Multi-core Architecture, Migration, Ping-Pong effect, Processor Affinity.

1. Processor Affinity

The processor affinity is a tendency for an application to run

on particular processor and resist migration. The soft affinity

is defined as, when the scheduler will prefer not to migrate a

process to another CPU unless needed. This can be

overridden with hard affinity assignments in source code.

Hard affinity APIs allow the developer to make explicit

assignments to a processor or a group of processors. We can

decide that where our code runs, and on which processor

our code will run that cannot be decided by user, but by

setting a CPU bit mask for each thread with the help of

calling functions Sched_setaffinity() and sched_getaffinity()

in LINUX it can be done[18].

The implementation of multithreading, the master thread

forks or generate child threads and then the system allocate

task to these child threads. Each child thread executes the

independent code in parallel, to schedule them among the

existing multiple processors or cores in a multi-core systems,

some technique or algorithm can be used. The technique or

algorithm will take decision after doing the analysis of usage

of each CPU, current load, and other factors, then the threads

or task are assign to the processors or cores[12].

2. Need of Parallelization

Previously we are using workstation, now we are using

desktop or laptop with multicore architecture. The parallel

processing concept can be applied to many field of computer

science. It is important to analyze the cpu usage, memory

usage and how to efficiently make use of existing processors

or cpu's present in our system. Parallel programming is not

easy to implement without taking any parallel programming

constraints.And also on which processor during

parallelelism, where each thread is going to run that is a task

of scheduler. Today, the systems are designed with multi-

core architecture where multiple core or processors are

available, and the designer and the existing operating system

for that computer device must distribute the operations as

possible as equally to all cores available with that device.

Open MP, CUDA, Open Cl and so on provides parallel

programming features to design the programs and and

implement parallelism.

3. Literature Survey

The overview of work done by different researchers and

understood after reading the research papers in the area of

parallel processing is given in this section. The paper entitled

“Using processor-cache affinity information in shared-

memory multiprocessor scheduling” written by Squillante

M.S. and Lazowska E.D. they were examined processor

affinity in a shared-memory multiprocessor system. They

said that in a shared-memory multiprocessor system

scheduling a task from one processor than scheduling same

task on another processor is efficient if the another processor

is having relevant data is available in this processor's cache.

They also observed that in shared-memory multiprocessor

systems the tasks are continuosly executed and release by the

processors. The tasks releases the processor when they have

to do input or output operation or synchronization or

premption or if time period expires[1].

The paper entitled “Characterization of Scientific Workloads

on Systems with Multi-Core Processors”, the authors Sadaf

R. Alam, Richard F. Barrett, Jeffery A.Kuehn, Philip C. Roth

and Jeffrey S. Vetter, they analyzed the behaviour of multi-

core system, that is dual-core, of a company AMD opteron,

its application kernels and other benchmarks they did for this

system. They were also evaluated a different techniques for

processor affinity tin order to manage existing memory in a

multi-core systems. And they said by appropriate selection of

MPI task and memory placements, they derived the

conclusion that there will improvement of 25% for

performing scientific calculations or application. The micro-

benchmark and results they have obtained for this multi-core

system[3].

Paper ID: SUB154652 1987

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

According to William J.P Pilauds, the challenge for the

industries is to locate the different technologies,

architectures, and system topologies and when one work it

amy lead to an invalid conclusions and results after

performing or simulating their proposed approach on

changing technologies, architecture and arrangement, are

changing time to time. The embedded industry is searching

and investigating an multi-core processors, which can be a

good pltaform for digital Signal processor. The author also

has pointed out in his paper about the difficulties may occur

due to change in processors architectures and others chages

in the specification of the computer systems. The paper

written by William J.P.Pilauds x after the investigation of an

Intel processor, proposed a processor FFTW (FFT in W)

inorder to overview the changes in architectures[4].

In paper entitled as “Parallel 1-D FFT Implementation With

TMS320C4x DSPs”, the author Rose Marie Piedra presented

two special cases the first is the size of input data for the

large FFT does not fit in processors on-chip random access

memory, and the execution in such case, the computation is

performed but the performance is degrades, the large input

data is off-chip. Due to this, the execution time required for

this FFT computation grows exponontially with input data

size. Second case is the same computation done by

multiprocessing system's and more processors available and

reduces the execution time. There is speed-up but it

increases the inter-processors communication overhead [7].

The paper entitled as “An efficient Practical parallelization

Methodology for Multi-core Architecture Simulation”

wriiten by James Donald and Margaret Martonosi presented

a programming methodology which is converting the

uniprocessor simulators into multi-core simulators. The

methodology used by them is required less development

effort compared to other other programming techniques.

And another advantage of this programming methodology is

after conversion, the obtained multi-core simulator retains a

modular and comphrensible programming structure. They

have used simple-scalar based and PTCMP frameworks.

They have successfully these two frameworks and achieved

the speed-up of 1.5X and 2.2X., and the opteron server used

has been used as dual-cpu dual-core[9]. The NUMA

architecture described by Gabriele Fatigati, the memory is

divided in local or faster and slower or remote areas[10].

The paper entitled as “Achieving High Performance With

TCP over 40 GbE on NUMA Architectures for CMS Data

Acquisition”, mentioned in their paper that the TCP and

socket abstraction is changing time to time, but at the

network layer, it has been found a gaint leap from a few

megabits to 100 gigabits in bandwidth. Today, in multi-core

architecture era, applications are expected to make full

utilization of resources available to us. In a Non-Uniform

Memory access architecture, the data acquistion based

applications when running the standard socket library, they

are unable to reach full efficiency and scalability, if the

software is not aware about the 1)Interrupt request 2) CPU

3) memory affinities. In this paper, a new software

component CMS online-framework is developed, which they

are using for transferring data with sockets. The framework

is event-based application with NUMA optimizations, and

also it permits to transfer data across a large distributed

system giving high throughput [11].

The paper entitled as “Sensmart Adaptive stack management

for multitasking sensor Networks”, introduced a SenSmart

multitasking operating systems for sensor networks. It is

having the multitasking capability, but the limitation when

small-memory system, the traditional stack management

techniques are not performed well. There is not having any

support when using small-memory system's. In this paper, an

efficient operating system with the help of combined binary

translation and a new kernel runtime was developed. They

introduced a new design of an operating system which has

improved preemptive multitask scheduling memory isolation

solves critical stack management problems, flexible

multitasking. The operating system used by them having an

advantage that the programmers don't have any burden of

estimating tasks, stack usage, it helps to schedule and run

more tasks as compared to other multitasking operating

system's exist for sensor networks. They concluded after

using the Sensmart multitasking operating systems for sensor

network better capability to manage concurrent to other

sensor network operating system[12].

4. Setting Processor Affinity

4.1 Tools and Ping- Pong Effect

A PI-Tool to achieve better performance of a Nqueen's

Program. They have used existing FIFO and Round-Robin

scheduling algorithms. They compared the PI-tool with other

tools. They have discussed about the ping-pong effect. The

ping-pong effect occurs in the situation when the scheduler

bounces or migrates the processes between the multiple

cores, each time the process schedule or rescheduled. This

operation is costly due to cache invalidation and may

degrades the performance of the system. Earlier, when one is

using single core system, the people are not worry about

ping-pong effect. In this paper, the PI-Tool used to reduce

this ping-pong effect. The tool used is also increasing the

priority of the process, changing the low to high priority and

binding that process for longer period of time to any cpu.

But, the drawback mentioned by them is other process

waiting for the same CPU may delayed [2].

The other tools based on CUI, Character User Interface tools

Top, Htop and Sysstat, not very user friendly, there is need

of remembering commands. Other GUI (Graphics User

Interface) based tool specified in this paper is Gnome or

KDE system monitor, which is monitoring and changing the

priority of a process, but there is no option available to

utilize the benefits of CPU affinity[2].

The other tools specified are Perfsuite and Red Hat Linux

Tuna, the Perfsuite tool make use of libraries to get the

information related to the performance of the processes. The

Red Hat Linux tuna GUI based tool and it is best tool,

helping in maximizing the performance, but having some

drawbacks. They are 1) there is option available to remove

all processing from the processor and making it idle. 2)

Paper ID: SUB154652 1988

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

installation requires registration 3) additional packages

required. To avoid the problems associated with CUI and

GUI based tools mentioned can be reduce by PI-tool. This

tool is using the techniques of processor or CPU affinity and

process priority. They have mentioned the advantages of

using PI-Tool as avoiding the ping-pong effect, helps in

increasing the priority of a process and can be used on any

linux operating system. the disadvantage presented of PI-tool

is as increasing the process priority the other process may

delayed[2].

4.2 Multi-Core Architecture and Issues

The parallel processing is used in different engineering and

application. Using multi-core system's, users can utilize all

available cores, and more than one task can be perform at the

same time. Without parallelization or without running

the code in parallel, and there will not be 100% CPU

utilization unless the application code runs in parallel on

different cores. They did experiment on FFT algorithm, and

concluded using parallel approach, it requires less

computation and memory resources, it suugested for

multithreaded model[13].

The authors of paper “Characterization of Scientific

workloads on systems with Multi-core Processors”

investigated about the scaling behavior of a kernels, set of

benchmarks, application on AMD opteron Dual-core

Processor systems. In this paper, they have evaluated

processor affinity techniques, and manage the memory

resources on multi-core systems[14].

“Efficient threads mapping on multicore architecture”

written by Iulan Nita and others, used a proper

programmming strategy for optimal mapping of all

processes to the resources available in the system, in parallel

computing and comparision is done using efficient mapping

algorithm and without this algorithm. The applications

running on multiple cores on a single chip requires

parallelism. The mapping algorithm, may lead to improve

the performance of the system and less energy consumption.

Their proposed algorithm simulation is done on Intel Core2

Duo T5879 2 Ghz and Intel Quad core Q6600 2.4 Ghz

machines[15].

The authors of paper “Dynamic Load Balancing for real-

time Video encoding encoding on heterogeneous CPU+GPU

systems” targeted to achieve efficient parallelization and the

RD performance analysis and done on multicore as well as

on multi-GPU systems of H.264/AVC inter-loop modules.

They proposed an dynamic load balancing algorithm which

allows efficient and concurrent video encoding across

several heterogeneous devices and relying on module-device

execution affinities and on realistic run-time performance

modeling. When they evaluated results using proposed

algorithm for video inter-loop encoding on single GPU

device and highly optimized multi-core CPU, the execution

speed-up values found were 2.6 on a single GPU-device and

8.5 speed-up value on multi-core CPU [16].

The paper entitled as “A new Generation of Real-Time

Systems in the JET Tokamak”, the authors focused on the

configuration aspects to enable the real-time capability in the

system's. They have used the framework named as

multithreaded application Real-Time executor to build the

application particularly optimized for exploring multi-core

architectures. A jitter analysis of this framework also

presented in the paper. They compared the performance of

this by running it on a Linux Vanilla Kernel and on a

Messaging Real-Time Grid(MRG)Linux kernel[17].

5. Objectives of Setting Processor Affinity

There are some objectives for the proposed research study 1)

Mapping or binding the running threads or tasks to specific

core in multi-core systems and resolving issues related to it,

2) To reduce cache problems, 3) To resist migration of

processes between the processors 4) Proper balancing of

available cores through proper load distribution, allocating

specific amount of work or task to each core, 5) To improve

computational time, 6) To optimize cache performance, 7)

To utilize the time quantum in a multhreaded application, 8)

To improve the performance of running applications, The

specific aspect after study is to design a new algorithm for

scheduling a task or to assign it to specfic core among

available cores in a multi-core architecture.

6. Significance of Processor Affinity

The question comes is whether the proposed research is

having any significance or is its importance matters in

today's multi-core systems. As we know Windows XP,

Windows 7 automatically sets their affinity to different

processors for laod distribution. But, if we have multiple

cores and not utilizing them the CPU properly, that is only

one application running at a time, then its a drawback of

using multi-core systems[3].

With multiple cores on a single chip, the tasks were running

in parallel, a proper algorithm is required to map the running

processes/thread of a application by scheduling each on the

multiple processors, without interrupting, or migrating them

time to time may degrades the performance. The efficient

mapping algorithm will set the processsor affinity for

running processes.

There is 25 % performance improvement for scientific

application using proper processor affinity techniques,

proper selection of MPI task and proper memory

management[13].

The results of parallel computing using efficient mapping

algorithm, to map threads to specific cores with the parallel

computing without using mapping algorithm were compared.

In second approach that is without using efficient mapping

algorithm, the thread mapping is done by Linux Thread

scheduler. Mapping of running thread to specific core is

decided by the algorithm, not by existing Linux Kernel

scheduler[14].

It is advantageous for the real-time applications where time,

the fast response is important. The user wants to run his/her

application they desire to run them faster than the normal

Paper ID: SUB154652 1989

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

execution. To achieve the maximum performance there is a

need of setting priority of running processes, processor

affinity, scheduling of task and so on. The processor affinity

allows us to select the processor /CPU where user wish to

run on our task or process.

7. Conclusion and Future Work

The conclusion after study the variuos research papers is,

one of the important issue is to improve the performance of

running applications with multi-core systems use proper

tools programming to take benefits of multiple cores.And to

resist the migration in a multi-core systems, design or

implement some techinques, tools or approach to scheduling

a task or process or threads if multi-threaded application or

to set the processor affinity, to assign task or process to

specfic core in a multi-core architecture.

References

[1] Squillante M.S, Lazowska E.D, “Using Processor-cache

affinity information in shared-memory multiprocessor

scheduling”, IEEE Transactions on Parallel and

Distributed Systems, pp-131-143, Vol. 4, Issue(2),

Feb1993.

[2] P. Bala Subramanyam raju, P.Govindarajulu, “PI-Tool

to improve performance of Aplication in Multi-core

Architecture”, International Journal of Computer

Science and Security (IJCSS), Vol. 8, Issue(4), 2014.

[3] Sadaf R. Alam, Richard F. Barrett, Jeffery A.Kuehn,

Philip C. Roth and Jeffrey S. Vetter“Characterization of

Scientific Workloads on Systems with Multi-Core

Processors”, Computer Science and Mathematics

Division Oak Ridge National Laboratory, Oak Ridge,

TN, USA 37831.

[4] William J. Pilauds, “Improving FFTW Benchmark to

Measure Multi-core Processor Performance ”, Curtiss

Wright Controls Embedded Computing, April 29, 2009.

[5] Duc Vianney, ”HyperThreading Speeds Linux

Multiprocessor performance on single Processor”, Linux

Kernel Performance Group, Linux Technology Center
IBM, Software Group, 01 January 2003.

[6] Chi Zhang, Xin Yuan, Ashok Srinivasan, ” Processor

affinity and MPI performance on SMP-CMP Clusters”,

Department of Computer Science, Florida State

University, Tallahassee.

[7] Rose Marie Piedra, “Parallel 1-D FFT Implementation

With TMS320C4x DSPs”, Digital Signal Processing —

Semiconductor Group, SPRA108 February 1994.

[8] Gabriele Fatigati, “The affinity model”, CINECA

Supercomputing group.

[9] James Donald, Margaret Martonosi, ” An efficient

Practical parallilization Methodology for Multi-core

Architecture Simulation”, Department of Electrical

Engineering, Princeton University, IEEE Computer

Architecture Letters, Vol. 5, 2006.

[10] Tomasz Bawej, Ulf Behrens, James Branson, Olivier

Chaze, Sergio Cittolin, Georgiana-Lavinia Darlea,

Christian Deldicque, Marc Dobson, Aymeric Dupont,

Samim Erhan, Andrew Forrest, Dominique Gigi, Frank

Glege, Guillelmo Gomez-Ceballos, Robert Gomez-

Reino, Jeroen Hegeman, Andre Holzner, Lorenzo

Masetti, Frans Meijers, Emilio Meschi, Remigius K.

Mommsen, Srecko Morovic, Carlos Nunez-Barranco-

Fernandez, Vivian O’Dell, Luciano Orsini, Christoph

Paus, Andrea Petrucci, Marco Pieri, Attila Racz, Hannes

Sakulin, Member, IEEE, Christoph Schwick, Benjamin

Stieger, Konstanty Sumorok, Jan Veverka, Christopher

C. Wakefield, and Petr Zejdl, “Achieving High

Performance With TCP over 40 GbE on NUMA

Architectures for CMS Data Acquisition”, IEEE

TRANSACTIONS ON NUCLEAR SCIENCE,

February 26, 2015.

[11] Rui Chu, Lin Gu, Yunhao Liu, Mo li and Xicheng Lu,

“Sensmart Adaptive stack management for multitasking

sensor Networks”, IEEE TRANSACTIONS ON

COMPUTERS, Vol. 62, No.1, January 2013, pp. 137-

150.

[12] Faran Mahmood, Bilal A.Khan, ”Parallelism and

performance Comparison of FFT on Multi core

Machines”, Institute of Space Technology, Islamabad

Highway.

[13] Iulian Nita, Adrian Rapan, Vasil Lazarescu, Tiberiu

Seceleanu, ”Efficient Threads mapping on Multicore

architecture”, 8
th

 International Conference on

Communications”, 2010, pp. 53-56.

[14] Svetislav Momcilovic, Aleksandar Ilic, Nuno Roma,

Leonel Sousa, ”Dynamic Load Balancing for real-time

Video encoding encoding on heterogeneous CPU+GPU

systems”, IEEE TRANSACTIONS ON

MULTIMEDIA, Vol.16, No.1, JANUARY 2014.

[15] Diogo Alves, André C. Neto, Daniel F. Valcárcel,

Robert Felton, Juan M. López, Antonio Barbalace,

[16] Luca Boncagni, Peter Card, Gianmaria De Tommasi,

Alex Goodyear, Stefan Jachmich, Peter J. Lomas,

Francesco Maviglia, Paul McCullen, Andrea Murari,

[17] Mark Rainford, Cedric Reux, Fernanda Rimini, Filippo

Sartori, Adam V. Stephen, Jesus Vega, Riccardo Vitelli,

Luca Zabeo, and Klaus-Dieter Zastrow, “A new

Generation of Real-Time Systems in the JET Tokamak”,

IEEE TRANSACTIONS ON NUCLEAR SCIENCE,

VOL. 61, NO. 2, APRIL 2014, pp. 717-719.

[18] Mike Aderson, “Understanding and Using SMP/Multi-

Core Processors, New Hardware and How to use it”,

The PTR Group, Inc. 10/28/2008.

[19] Barbara Chapman, Gabriele Jost, Ruud van der Pas, ”

Using OpenMP Portable Shared Memory Parallel

Programming, “The MIT Press, Cambridge,

Massachusetts London, England, pp. 28-34.

Paper ID: SUB154652 1990

