
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Distributed Java Applications

Bhawna, Sumit Wadhwa

1Research Scholar Department of Computer Science and Engineering, NNSS SGI Samalkha, Kurukshetra University Kurukshetra

2Assistant .Professor Department of Computer Science and Engineering, NNSS SGI Samalkha, Kurukshetra University Kurukshetra

Abstract: This paper presents a new Java oriented monitoring infrastructure that enables tools to observe, analyze and manipulate the

execution of distributed Java applications independent of implementation details like instrumentation of monitored entities, hardware

platform and application libraries. Tools can access the monitored application via a standardized interface defined by an On-Line

Monitoring Interface Specification (OMIS) and extended by a set of new Java-specific services relating to garbage collection, class

loading, remote method invocation, etc. The new monitoring functionality can be applied for building various kinds of tools and for

adapting the already existing ones, such as performance analyzers, debuggers, etc., working in the on-line mode.

Keywords: Java, monitoring system, monitoring interface, distributed object system, OMIS

1. Introduction

Java, as a relatively simple, object-oriented, secure and

portable language, is also a flexible and powerful

programming system for distributed computing. Program

development with Java results in software that is portable

across multiple machine architectures and operating systems.

Distributed programming in Java is supported by remote

method invocation (RMI), object serialization, reflection, a

Java security manager and distributed garbage collection.

Java RMI is designed to simplify the communication between

objects in different virtual machines allowing transparent

calls to methods in remote virtual machines.A major

disadvantage of Java is the speed of execution, especially in

the case of distributed applications, due to the limited

bandwidth of the communication channel and the added

delay caused by the JVM translating the byte code and

garbage collection. A developer of distributed systems faces

various problems that make developing such systems more

difficult than expected. In a complex distributed application,

performance optimization of the code becomes much more

important and requires programmers‟ close attention.

Understanding the nature of Java-related problems allows

programmers to build large and scalable applications.

However, without a suitable performance analysis tool for

Java programs, it is often difficult to analyze a program for

performance-tuning and bug detection. Thus, there is a need

for tools (performance analyzers, debuggers, etc.) that allow

programmers to control and improve their applications. In

this paper, we focus on the issues of building a monitoring

platform of the above properties based on a well-defined

interface between a monitoring system organized as

middleware and tools that use the monitoring facilities

provided by the monitoring middleware.

2. Literature Review

This section gives a review of Handwritten Character The

first version of JVMs had poor support for monitoring Java

programs. Initially there was a simple debugger, jde, attached

to the Java Development Kit (JDK). Then, there was an

instrumented Java virtual machine build for JDK version

1.16 to support the collection of profiling data generated

when executing a Java program. This approach was

developed until version 2 of the Java platform. All JVMs for

the new Java platform were equipped with interfaces for

debugging (JVMDI) [6] and profiling (JVMPI) [7]. A new

release of Java 2 Platform version 1.5, called Tiger, contains

a new native profiling interface called JVMTI which is

intended to replace JVMPI and JVMDI. JVMTI aims to

cover the full range of native in-process tools access, which

in addition to profiling, includes monitoring, debugging and,

potentially, a wide variety of other code analysis tools.

Additionally, Tiger‟s implementation includes a mechanism

for bytecode instrumentation, the Java Programming

Language Instrumentation Service (JPLIS). This enables

performance analysis tools to execute additional profiling

only where needed. The advantage of this technique is that it

allows for more focused analysis and limits the interference

of the profiling tools in a running JVM. The instrumentation

can even be dynamically generated at runtime, as well as at

class loading time, and pre-processed as class files.Most of

the tools for JVM versions from 1.2 to 1.4 are based on the

Java Virtual Machine Profiling Interface (JVMPI) [7].

Starting with JDK 1.2 SDK it also includes an example

profiler agent for efficiency examination called hprof [8],

which can be used to build professional profilers. A Heap

Analysis Tool (Hat) [9] enables one to read and analyze

profile reports of the heap generated by the hprof tool and

may be used e.g. for debugging “memory leaks”. Tracer [10]

is a debugger which provides traditional features, e.g. a

variable watcher, breakpoints and line-by-line execution. J-

Sprint [11] provides information about what parts of a

program consume the most of execution time and memory.

JProfiler [12], targeted at JEE and JSE applications, provides

information on CPU and memory usage, thread profiling and

VM. Its visualization tool shows the object references chain,

execution control flow, thread hierarchy and general

information about JVM using special displays. There is also

a group of powerful commercial tools with friendly graphical

interfaces: OptimizeIt [13], Jtest [14] and JProbe [15, 16],

which enable identification of performance bottlenecks.All

these tools have similar features: memory, performance, code

coverage analysis, program debugging, thread deadlock

detection and class instrumentation, but many of them are

Paper ID: SUB154478 1589

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

designed to observe a single-process Java application and do

not support directly monitoring a distributed environment

based on RMI middleware, except for JaViz [17], which is

intended to supplement the existing performance analysis

tools with tracing client/server activities to extend Java‟s

profiling support for distributed environments. The above

mentioned tools provide a wide range of advanced

functionalities, but practically each of them only provides a

subset of the desired functions. Distributed systems are very

complex and the best monitoring of such a system could be

achieved by using diverse observation/manipulation

techniques and mechanisms. It is therefore often desirable to

have a suite of specialized tools such as debuggers and

performance analyzers, each of them addressing a different

support issue and allowing developers to explore the

program‟s behaviour from various viewpoints. Therefore,

there is a need to establish a more general approach to build

flexible, portable and efficient monitoring based tools.

3. Distributed Applications

The term distributed applications, is used for applications

that require two or more autonomous computers or processes

to cooperate in order to run them. Thus, the distributed

system considered in this thesis, involves three resources,

processing, data and user interface. Both processing and data

can be distributed over many computers. The user interface is

usually local to the user so that the graphical interface, which

consumes high bandwidth, does not have to be transmitted

from one location to another (figure 1).

Figure 1: A Typical Distributed Application Scenario

In distributed computing, the computer network is used to

support the execution of program units, called processes that

cooperate with one another to work towards a common goal.

This approach has become popular due to a number of

developments like:

 Increase in the number of personal computers

 Low cost of establishing computer networks with the

advancement of technology

 Computer manufacturers now offer networking software as

a part of the basic operating system

 Computer networks are now an established way of

disseminating information

The modern client/server model uses proxy objects for

server and client respectively. The client calls the proxy,

making a regular method call. The client proxy contacts the

server. Similarly, a second proxy object on the server

communicates with the client proxy, and it makes regular

calls to the server object.

Methods of proxies’ communications: There are three

different methods with which proxies communicate with each

other.

1. RMI, the Java Remote Method Invocation technology,

supports method calls between distributed Java objects.

2. CORBA, the Common Object Request Broker

Architecture, supports method calls between objects of

any programming language. CORBA uses the Internet

Inter-ORB Protocol or IIOP to communicate between

objects.

3. SOAP, the Simple Object Access Protocol, is also

programming – language neutral. However, SOAP uses

an XML-based transmission format

4. Remote Method Invocation

RMI allows a Java object that executes on one machine to

invoke a method of the Java object that executes on another

machine. This is an important feature, because it allows

building distributed application. All the RMI classes are

available in jave.rmi package. To use different classes of this

package we must import the java.rmi package in the

beginning of the Java program. One main application where

RMI is used client/server. The server receives requests from

a client, processes it & returns the result. For example, the

client seeking product information can query a Ware House

object on the server. It calls a remote method, find, which has

one parameter: a Customer object. The find method returns

an object to the client: the Product object (Figure 2).

Figure 2: RMI using Client & Server Object

In RMI terminology, the object whose method makes the

remote call is called the client object. The remote object is

called the server object.

Paper ID: SUB154478 1590

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5. Common Object Request Broker

Architecture

Though RMI is a powerful mechanism for distributing and

processing objects in a platform-independent manner, it has

one significant drawback. it only works with objects that

have been created using Java. Convenient though it might be

if Java were the only language used for creating software

objects, this simply is not the case in the real world. A more

generic approach to the development of distributed systems is

offered by CORBA (Common Object Request Broker

Architecture), which allows objects written in a variety of

programming languages to be accessed by client programs

which themselves may be written in a variety of

programming languages.Another fundamental difference

between RMI and CORBA is that, whereas RMI uses Java to

define the interfaces for its objects, CORBA uses a special

language called Interface Definition Language (IDL) to

define those interfaces. Although this language has syntactic

similarities to C++, it is not a full-blown programming

language. In order for any ORB to provide access to software

objects in a particular programming language, the ORB has

to provide a mapping from the IDL to the target language.

Mappings currently specified include ones for Java, C++, C,

Smalltalk, COBOL and Ada.At the client end of a CORBA

interaction, there is a code stub for each method that is to be

called remotely. This stub acts as a proxy (a 'stand-in') for the

remote method. At the server end, there is skeleton code that

also acts as a proxy for the required method and is used to

translate the incoming method call and any parameters into

their implementation-specific format, which is then used to

invoke the method implementation on the associated object.

Method invocation passes through the stub on the client side,

then through the ORB and finally through the skeleton on the

server side, where it is executed on the object. For a client

and server using the same ORB, Figure 3 shows the process.

Figure 3.3: Remote method invocation when client and

server are using the same ORB.

6. Simple Object Access Protocol

IBM, Lotus Development Corporation, Microsoft, Develop

Mentor and User land Software developed and drafted

SOAP, which is an HTTP-XML-based protocol that enables

applications to communicate over the Internet, by using XML

documents called SOAP messages.SOAP is compatible with

any object model, because it includes only functions and

capabilities that are absolutely necessary for defining a

communication framework. Thus, SOAP is both platform and

software independent, and any programming language can

implement it. SOAP supports transport using almost any

conceivable protocol. SOAP binds to HTTP and follows the

HTTP request–response model. SOAP also supports any

method of encoding data, which enables SOAP-based

applications to send virtually any type information (e.g.,

images, objects, documents, etc.) in SOAP messages. A

SOAP message contains an envelope, which describes the

content, intended recipient and processing requirements of a

message. The optional header element of a SOAP message

provides processing instructions for applications that receive

the message.

7. Conclusion

During the first two decades of their existence, computer

systems were highly centralized. A computer was usually

placed within a large room and the information to be

processed had to be taken to it. This had two major flaws, a)

the concept of a single large computer doing all the work and

b) the idea of users bringing work to the computer instead of

bringing the computer to the user. This was followed by

„stand alone PCs‟ where the complete application had to be

loaded on to a single machine. Each user has his/her own

copy of the software. The major problems were a) sharing

information and b) redundancy. These two concepts are now

being balanced by a new concept called computer networks.

In computer networking a large number of separate but

interconnected computers work together. An application that

requires two or more computers on the network is called a

network application. The client–server model is a standard

model for network applications. A server is a process that is

waiting to be contacted by a client process so that the server

can do something for it. A client is a process that sends a

request to the server.

8. Acknowledgment

Author would like to give sincere gratitude especially to

Mr.Sumit Wadhwa (Guide), for his guidance and support to

pursue this work.

References

[1] Bubak M, Funika W, Metel P, Orłowski R and

Wism¨uller R 2002 Proc. 4 th Int. Conf. PPAM 2001,

Naleczow, Poland, LNCS 2328 315

[2] Bubak M, Funika W, Smetek M, Kilianski Z and

Wism¨uller R 2003 Proc. 10 th European PVM/MPI

Users‟ Group Meeting, Venice, Italy, LNCS 2840 447

[3] Bubak M, Funika W, Wism¨uller R, Metel P and

Orłowski R 2003 Future Generation Computer Systems

19 651

[4] Bubak M, Funika W, Smetek M, Kilianski Z and

Wism¨uller R 2004 Proc. 5 th Int. Conf. PPAM,

Czestochowa, Poland, LNCS 3019 352

[5] Funika W, Bubak M, Smetek M and Wism¨uller R 2004

Proc. Int. Conf. on Computational Science, Cracow,

Poland, LNCS 3038 472

Paper ID: SUB154478 1591

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[6] Sun Microsystems: Java Virtual Machine Profiler

Interface (JVMDI),

http://java.sun.com/j2se/1.4.2/docs/guide/jpda/jvmdi-

spec.html

[7] Sun Microsystems: Java Virtual Machine Profiler

Interface (JVMPI), http://java.sun.com/j2se

/1.4.2/docs/guide/jvmpi/jvmpi.html

[8] The SDK Profiler, http://www.javaworld.com

/javaworld/jw-12-2001/jw-1207-hprof.html

[9] Sun‟s Heap Analysis Tool (HAT) for Analysing Output

from hprof,

http://java.sun.com/developer/onlineTraining/Programmi

ng/JDCBook/hat bin.zip

[10] JTracer Tool, http://amslib.free.fr/

[11] Java Profiler J-Sprint, http://www.j-sprint.com/

[12] JProbe, http://java.quest.com/jprobe/jprobe.shtml

[13] JView, http://www.devstream.com/

[14] Kazi I H, Jose D P, Ben-Hamida B, Hescott C J, Kwok

C, Konstan J, Lilja D J and Yew P-C 2000 IBM Systems

Journal 39 (1) 96;

http://www.research.ibm.com/journal/sj/391/kazi.html

[15] Sun Microsystems: Java Platform Debug Architecture

(JPDA), http://java.sun.com/j2se/1.4.2/docs/guide/jpda/

Author Profile

Bhawna is currently in final year M TECH Computer science and

Engineering from Kurukshetra University, Kurukshetra. His

interested areas of research are Neural Networks, Mobile

computing, Network security, and Algorithms.

Paper ID: SUB154478 1592

