Effect of Reactive Magnesia on the Properties of Alkali Activated Slag Cement Pastes

H.A. Abdel-Gawwad¹, S. Abd El-Aleem²

¹Housing and Building National Research Center, Giza, Egypt,
²Chemistry Department, Faculty of Science, Fayoum University, Fayoum, Egypt

Abstract: The effect of different proportions of different reactive magnesium oxides (MgOs) on the compressive strength and drying shrinkage of alkali activated slag pastes (AASPs) has been investigated. The slag was activated by 6 wt., % of sodium hydroxide (SH) and liquid sodium silicate (LSS) at a ratio of 3:3 wt., %. The MgOs with different reactivities were produced from calcination of hydromagnesite at different temperatures (550, 1000, and 1250°C). The results show that, the crystallinity of MgO increases with the calcination temperature, therefore its reactivity decreases with temperature. The highly reactive MgO550 accelerates the hydration and consequently increases the early compressive strength of AASPs, while the low reactive MgO1250 had little effect. The acceleration of AAS-MgO hydration at early ages is mainly due to the exothermic hydration reaction of MgO. The replacement of GBFS by 5 wt., % of low reactive MgO1250 significantly improves the compressive strength at later curing ages. The replacement of slag by 5, 10 and 15 % of MgO550 reduces the drying shrinkage of AASPs by ~40, 57 and 77%, respectively after 90 days. Also, the drying shrinkage of AAS is reduced by replacement of slag with different reactive MgOs. The MgO reacts with slag to form hydrotalcite like-phases (HT) as detected by XRD, FTIR and TG/DTG techniques.

Keywords: Reactive magnesium oxide, calcination temperature, drying shrinkage, hydrotalcite like-phases, magnesium silicate hydrate

1. Introduction

Recently, alkali-activated slag (AAS) binders have taken a great interest due to the lower energy requirements and lower emission of greenhouse gases as compared to Portland cement (PC) manufacturing. Production of cement accounts for about 5% of the global total CO₂ emissions [1], [2]. Reduction of energy usage can be taken place even by design methods [3] or using supplementary cementitious materials (SCMs) (e.g., granulated blast furnace slag (GBFS), fly ash (FA), and silica fume) in cement concrete, either as a mineral admixture or a component of blended cement [4].

Blast furnace slag (BFS) is a by-product generated from the manufacture of pig iron. It forms when the slagging agents (e.g., iron ore, coke ash and limestone) are added to the iron ore to remove the contaminated impurities. In the process of reducing iron ore to iron metal, a molten slag forms as nonmetallic liquid (consisting primarily of silicates and aluminosilicates of calcium and other elements) that floats on the top of the molten iron. The molten slag is then separated from the liquid metal and cooled by different methods. When the slag is allowed to cool slowly in the air, it solidifies into crystalline material known as air-cooled slag (ACS). But, when it is rapidly and sufficiently cooled by water, it solidifies into granulated form, which known as water cooled slag (WCS) or granulated blast furnace slag (GBFS). The chemical composition of slag can vary over a wide range depending on the nature of the ore, the composition of the limestone flux, coke consumption and the type of iron being made. The main constituents of slag include: CaO, SiO₂ and Al₂O₃. In addition, it contains small amount of MgO, FeO and sulphides as CaS, MnO and Fe, which are the most common components in commercial silicate glasses [5].

In previous works [6]-[8], it was concluded that, indicate that, AAS cements and concretes present high mechanical strength and good performance in chemical attack, frost/thaw cycles and high temperatures. The main application of these binders is in pre-casting and repairing.

Cincotto et al [9] reported that, AAS mortars and concretes are subjected to substantial autogenous and drying shrinkage; this is one of the main drawbacks of definitive use of AAS as an alternative to traditional PC binder. From the main factors that affecting the drying shrinkage of AAS, are the type and content of alkali activator, the properties of aggregate and slag [10], as well as curing environment [11]. In general, water–glass activated slag has more shrinkage than sodium hydroxide activated slag and the drying shrinkage of AAS increases with the activator dosage as well as slag fineness [12]. In addition, the shrinkage of AAS is very sensitive to the curing conditions. It is reported that, the drying shrinkage of AAS concrete is similar to that of PC-concrete at 70% relative humidity (RH), and it is significantly higher at 33 and 50% RH than that of PC-concrete [13], [14].

Bakharev et al. [15] studied the effect of different admixtures on water glass-activated slag concrete. They found that, lower drying shrinkage (at 50% RH) was observed for the AAS concrete compared to PC concrete prepared with 6 mass, % of gypsum. It was concluded that, gypsum reduces both autogenous and drying shrinkage, due to the formation of high expansive phases such as ettringite (AFt). The specimens containing superplasticizer showed the highest drying shrinkage, followed by those without admixtures, and then those with water-reducing admixtures, whilst the specimens containing air-entraining agent exhibited the lowest shrinkage.

The use of magnesia, MgO, as a shrinkage reducing additive, dates back to the mid-1970s in the construction of

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY
the Baishan concrete arch gravity dam [16], where it proved to be a more efficient and economical admixture for controlling the shrinkage of PC than conventional admixtures [17]. The volume compensation during the drying process was due to the reaction between MgO and water to form brucite Mg(OH)$_2$, which results in 118% volume increase [18]. The effect of MgO in the AAS-systems has recently been investigated, either in terms of its varying natural content in different slag compositions [19], or as an additive [20]. The MgO naturally present in slags is categorized as dead burned MgO (Percilace); whereas reactive grade MgO (calcined at temperature lower than 1000°C) or hard burned MgO (calcined at 1000–1400°C) are often chosen as additives [21].

The effect of natural MgO content in different slags on the performance of AAS was investigated [19]. The results showed that, the main hydration product of AAS-MgO system is still calcium silicate hydrate (CSH) gel. The MgO molecules react with slag to form hydroxotalcite, (Mg$_6$Al$_2$(OH)$_{16}$CO$_3$4H$_2$O)-like phases, which increases with the MgO percentage. The hydroxotalcite phases are more voluminous than CSH, resulting in higher strength, therefore the higher the MgO content, the higher the strength.

Fei Jin et al. studied the effect of addition of commercial reactive MgO on drying shrinkage and strength of AAS. They are found that, the highly reactive MgO accelerated the early AAS hydration, while MgO with medium reactivity had little effect [22].

The drying shrinkage was significantly reduced by highly reactive MgO but it also, generated severe cracking under the dry condition. Medium-reactive MgO only showed observable shrinkage-reducing effect after one month, but the cement soundness was improved. The hydration products were analyzed by XRD, TGA and SEM techniques. It was concluded that, Mg was mainly incorporated in the hydrotalcite-like phases. The curing conditions, the time of hydration, had little effect on the development of strength and shrinkage reduction of AAS-MgO binder, which are highly dependent on the reactivity and content of MgO.

In this work the effect of reactive magnesia (produced from hydromagnesite calcination at different elevated temperatures) on the physico-mechanical properties of AAS was studied.

2. Materials and Experimental Techniques

2.1. Materials

Granulated blast-furnace slag (GBFS) was supplied from Iron and Steel Company, Helwan, Egypt. Hydromagnesite (HM) was purchased from Arabic Chemical Company, Egypt. Sodium hydroxide (SH) powder of 99 % purity was obtained from Fisher Scientific Company, UK. Liquid sodium silicate (LSS) with 17 % Na$_2$O, 32 % SiO$_2$ and density of 1.46 was obtained from El Gomhourya Chemical Company, Egypt. The chemical compositions of GBFS and hydromagnesite as determined by X-ray fluorescence (XRF) were listed in Table (1). The mix composition of GBFS-MgO blends, alkali activator content and calcination temperature were given in Table (2). The mineralogical compositions of GBFS and HM are plotted in Fig. (1). (It is clear that, GBFS is mainly amorphous and HM is well crystalline composed of 100 % HM without any impurities).

Fig. (2) shows the particle size distribution of GBFS, HM and MgO, produced from HM calcination at different temperatures, (550, 1000 and 1250°C). It is can be found that, GBFS has 90 % of the particle size < 50 μm and 10 % < 7 μm. On the other side, the particle size of HM is mainly lower than 15 μm. The grain size of MgO produced from HM calcination at 550 °C (< 7 μm) is lower than those produced at 1000 °C (< 8 μm) and 1250 °C (< 11 μm).

2.2. Experimental Techniques

2.2.1. Calcination of hydromagnesite (HM)

The differential thermal analysis (DTA) thermogram of HM is graphically shown in Fig. (3). The endotherms located at 68-280°C are due to dehydroxylation and dehydration of HM. The carbonate is decomposed at 425–486°C [23].

Decomposition of hydromagnesite takes place as the follows:

$$\text{Mg}_6(\text{CO}_3)_4(\text{OH})_2 \cdot 4 \text{H}_2\text{O} \rightarrow \text{Mg}_6(\text{CO}_3)_4(\text{OH})_2 + 4 \text{H}_2\text{O}$$ (1)

$$\text{Mg}_6(\text{CO}_3)_4(\text{OH})_2 \rightarrow 4 \text{MgCO}_3 + \text{MgO} + \text{H}_2\text{O}$$ (2)

$$4 \text{MgCO}_3 \rightarrow 4 \text{MgO} + 4 \text{CO}_2$$ (3)

In order to study the effect of different calcination temperatures on the reactivity and crystallinity of magnesium oxide, the hydromagnesite was calcined at 550, 1000 and 1250°C. The MgO calcined at temperatures 550, 1000 and 1250 respectively. The XRD diffractograms of MgO produced from HM calcination at different temperatures from 550 up to 1250 are shown in Fig. (4). It is obvious that, the crystallinity degree of MgO increases with calcination temperature.

The duration time required for the neutralization of an acidic solution (0.25M acetic acid) with 5.0 g of a certain MgO (MgO$_{550}$, MgO$_{1000}$ or MgO$_{1250}$) in presence of Phenolphthalein as acid-base indicator [21]. The time consumed from MgO addition to the change of the solution color is inversely proportional with MgO reactivity; the shorter time means more reactive MgO. The test was performed in triplicates for each sample and the average value was taken.

2.2.2. Preparation of alkali activated slag–MgO pastes

Three AAS-MgO pastes were prepared in which MgO$_{550}$ content varied from 5 to 15 % by mass of slag. Also, two AAS-MgO mixes containing 5 mass, % of MgO$_{1000}$ and 5 mass, % MgO$_{1250}$ were prepared as seen in Table (2). All other components were kept constant including water to solid (GBFS, MgO and activators) ratio of 0.30 to ensure standard workability. The MgO was first mixed with GBFS for 2 min in a bench-top mixer to achieve complete homogeneity, then the 3.3 wt., % of NaOH-LSS, dissolved in mixing water, was added. The NaOH and LSS percentage was chosen as described elsewhere [24], [25]. After mixing...
for another 2 min, the mix was cast into the cubic (25 × 25 ×
25 mm) or prism (25×25×285 mm) moulds in two layers and
manually-vibrated to eliminate air voids. The samples were
then covered to avoid moisture loss. After 24 h, the specimens
were carefully demoulded and transferred into the
relative humidity chamber of 99 ± 1 % at 23 ± 2°C.

2.2.3. Compressive strength and drying shrinkage
Three specimens of each AAS-MgO blend were tested for
compressive strength and drying shrinkage measurements.
The compressive strength was measured according to ASTM C490
[26]. Shrinkage was determined according to ASTM C490 [27].
The length change of activated slag mortar with or without
MgO at any curing age was calculated as follows: L = (Lx –
L0) / G where: Lx = comparator reading of specimen at x age
minus comparator reading of reference bar at x age. L0 =
initial comparator reading of specimen minus comparator reading
of specimen at zero time. G = nominal gauge length of 285 mm.

Differential thermal analysis (DTA) and thermogravimetric
analysis (TGA) were carried out by heating the sample in
nitrogen atmosphere up to 1000°C with a heating rate
20°C/min using a DT-50 Thermal Analyzer (Shimadzu Co-
Kyoto, Japan). XRD analysis was carried out on a Philips
PW3050/60 X-ray diffractometer using a scanning range
from 5 to 50 2θ with a scanning speed of 1°/s and resolution of
0.05°/step. FTIR analysis (FTIR) was carried out for some selected hydrated
samples to provide additional information on the phase
transition. The FTIR was recorded from 4000 to 400 cm
3.

3. Results and Discussion

3.1. Reactivity determination of MgO
The neutralization times of different reactive MgOs
(MgO550, MgO1000 or MgO1250) tested with 0.25 M acetic
acid are plotted in Fig. (5). It is clear that, the times required
to neutralize acetic acid by MgO550, MgO1000 and MgO1250
are 37, 70 and 163 sec, respectively. This indicated that, the
MgO550 was more reactive than MgO1000 and MgO1250. This
proves that, the reactivity of the MgO is strongly affected by
calcination temperature [28].

3.2. Compressive strength measurement
Fig. (6 a) shows the effect of MgO550 content (5, 10 and 15
mass, %) on the compressive strength of hardened AAS
pastes. The results indicated that, there is a significant development in the compressive strength at early curing ages for the pastes containing 5 mass, % MgO550. The reduction in compressive strength was observed with 10 and 15 mass, % MgO550 (M10-550 and M15-550), but still greater than that of reference sample (M0) at 1 day. The 5 mass, % MgO550 increases the early age strength up to 7
days, while the 10 and 15 mass, % MgO550 increase the early age
strength for only 1day. The M5-550 showed nearly the same
strength compared to M0 after 28 and 90 days. But the
compressive strengths for M10-550, M15-550 were reduced by
about 22 and 30 % at 28 days, respectively and 25, 32% at
90 days compared to reference sample (M0).

Fig. (6 b) represents the effect of MgO reactivity (MgO550, MgO1000 or MgO1250) on the strength of hardened AAS
pastes. The results show that, the replacement of AAS by 5 mass, % MgO1250 has a little effect on strength at early
curing ages (1 and 7 days). The compressive strength of AAS-MgO550 blend at 1 and 7 days are higher than those of
M0, M5-1000, and M5-1250 blends. A significant increase in
strength was observed after 7 days when AAS is replaced by
5 mass, % MgO550. It can be concluded that, the highly reactive MgO accelerates the hydration of GBFS at early ages as a result of the exothermic hydration reaction of
MgO, leading to the formation of excessive hydration products [22]. Liska [29] found that, the heat of hydration of
high reactive MgO was nearly 25 times higher than that of
less reactive MgO. It was also reported that, the temperature
released during the hydration of high reactive MgO, increases to ~100°C in 30 min. The replacement of GBFS by
10 and 15 mass, % of high reactive MgO decreases the compressive strength at later ages. This may be due to that,
MgO reacts with broken Si-O or Al-O in AAS matrix to
form magnesium silicate hydrate (Mg-S-H) or hydroaluminate
like phase (Ht), leading to the decrease of the active species,
AlO
4− and SiO
4−, which act as monomers for C-S-H and C-
A-S-H polymerization. In addition, the replacement of
GBFS with high MgO550 percentage reduces the aluminosilicate content of AAS.

3.3. Drying shrinkage
The variation of drying shrinkage of AAS-MgO pastes with the reactivity and content of MgO is graphically shown in
Fig. (7). It is obvious that, the drying shrinkage of the
investigated pastes containing MgO550, decreases by ~ 40,
57, and 77 %, for M5-550, M10-550, and M15-550,
respectively compared to M0 after 90 days. There is no a
great difference in the drying shrinkage values of M5-1000 and
M5-550, especially at later curing ages. In contrast, the
drying shrinkage of M5-1250 is nearly close to that of M0
during the first week, then showing a decrease in shrinkage
value by ~ 15 % at 90 days than M0. It can be concluded that,
the drying shrinkage reduction of AAS in presence of
MgO is mainly due to the expansion caused by Ht, which
formed during the hydration and carbonation of MgO [20]. The Ht causes healing of cracks resulted from AAS
shrinkage; the healing property of Ht is attributed to its lower density (2g/cm
3) compared to tobermorite like CSH
(2.3g/cm
3), leading to the formation of a uniform and
compact microstructure with more effective pore filling and
low porosity [19]. The formation rate of Ht increases with
MgO reactivity since the fast hydration rate of MgO results in
the Mg2+ being available to react with broken Al-O
species in AAS matrix [30].

3.4. XRD analysis
The XRD patterns of AAS with and without reactive MgO
after 1 and 28 days of hydration are plotted in Fig. 8 (a, b). It
can be observed that, two main hydration products (Ht and
CSH) were detected. The broad peak in the range of 25–35°
20 is related to CaO–Al₂O₃–MgO–SiO₂ glass structure of slag. The intensity of Ht peak in case of M5-550 is higher than that of M5-1250. This indicates that, the MgO₅₅₀ reactivity is higher than MgO₁₂₅₀. In addition, the high content of unreacted MgO was detected in pastes containing MgO₁₂₅₀, as a result of its lower reactivity. The intensity of CSH peak increases with curing time [31]. As the MgO₅₅₀ mass, % increases, the Ht peak intensity enhances. Also, the MgO peak intensity decreases with time, due to the formation of more amount of Ht. The figure also shows that, there is no brucite present in all investigated mixes. This confirms that, MgO reacts with Si–O and Al–O (produced from alkali activation of slag), forming Mg-S-H or Ht [32], but Mg–S–H is hard to be detected by XRD [33].

3.5. Thermo-gravimetric and derivative thermogravimetric analysis (TG/DTG)

The TG/DTG thermograms of pastes cured for 1 and 28 days are represented in Figs. 9 (a, b) and Fig. 10 (a, b), respectively. It can be seen that, the weight loss at 250°C, is attributed to the dehydration of CSH and Mg–S–H [30]. The endotherm at the temperature range of 250–500°C corresponds to the Ht decomposition. The small peak at around 520–570°C is due to the dehydration of Mg–S–H [34]. The peak at 600–900°C refers to the dissociation of Ht [35] and carbonate containing phases [36]. The intensities of Ht, CSH, and Mg-S-H peaks increase with MgO content as well as curing time. This is due to the increase of hydration rate of slag with MgO content. At 1 and 28 days of hydration, the weight loss of M5-550 (10.34% and 12.03 %) is greater than those of M5-550 (8.31 % and 9.46 %) and M0 (7.71 % and 8.89 %) for 1 and 28 days, respectively. On the other side, the weight loss of M5-1250 (7.03 %) is lower than that of M5-550 (8.31 %) at 1 day; this indicates the low reactivity of MgO₁₂₅₀, which leads to the formation of low amount of Ht and Mg-S-H. The weight loss of M5-1250 (10.36%) is greater than those of M0 (8.89%) and M5-550 (9.46 %) at 28 days. It can be concluded that, MgO₅₅₀ remarkably accelerates the slag hydration at 1 day, while the MgO₁₂₅₀ has little effect. At 28 days, both MgO₅₅₀ and MgO₁₂₅₀ increase the hydration rate of slag.

3.6. Fourier transformer infrared (FTIR) spectroscopy

Fig. 11 (a, b) represents the FTIR spectra of AAS with and without reactive MgO at 1 and 28 days. The results show absorption band at 464-492 cm⁻¹, which is due to bending vibration of O–Si–O bonds. The well-resolved band at 658-716 cm⁻¹ is associated to the symmetric stretching vibrations of Si–O–Al bridges. The absorption band located at the range of 952-974 cm⁻¹ seems to be due to asymmetric stretching vibrations of Si–O–T (where, T is Al or Si). The absorption band located at 1640-1649 cm⁻¹ refers to the bending H-O-H vibration. But, the absorption band around 3450 cm⁻¹ is mainly related to stretching vibration of O-H groups. The absorption bands located at 1382-1465 cm⁻¹ refer to carbonate group in CaCO₃, MgCO₃ or Ht. Also, it can be observed that, the intensities of characteristic absorption bands for bending H-O-H vibration and stretching vibration of O-H group increase with curing time for all mixes. This is attributed to the continuous activation of slag hydration and formation of successive hydrated products with time.

The intensities of absorption bands referred to symmetric stretching vibrations of Si–O–Al and asymmetric stretching vibrations of Si–O–T bonds decrease with MgO₅₅₀ content for 1 and 28 days of curing. These prove the reaction between the activated species (Al-O and Si-O) and MgO, which leads to the formation of Mg-S-H and Ht. This can be observed from the intensities of the bands related to bending H-O-H vibration and stretching of O-H groups which increases with of MgO₅₅₀ content. The increase of the replacement level of GBFS with MgO₅₅₀ leads to decrease the intensity of aluminosilicate bands, due to the reaction of MgO with aluminosilicate minerals. It is well observed that, the intensity of bands related to Si–O–Al symmetric stretching vibration and Si–O–T asymmetric stretching vibration of M5-1250 are higher than those of M5-550, especially after 28 days. Also, the high full width at half maximum (FWHM) of Si–O–T asymmetric stretching vibration band of M5-1250 is lower than those of M5-550 and M0. This is attributed to the low reactive MgO₁₂₅₀, which acts as nucleation centers and accelerates the crystallization rate, reflecting on the increase of M5-1250 strength after 28 days of hydration [37].

4. Conclusion

The main findings of this study can be summarized as follows:
1) The crystallinity of MgO increases with the calcination temperature, therefore its reactivity decreases with temperature.
2) The highly reactive MgO₁₂₅₀ accelerates the hydration and consequently increases the early compressive strength of AAS pastes, while the low reactive MgO₁₂₅₀ had little effect.
3) The acceleration of hydration of AAS-MgO at early ages is mainly due to the exothermic hydration reaction of MgO.
4) The replacement of GBFS by 5 mass, % of low reactive MgO₁₂₅₀ significantly improves the compressive strength at later ages of curing.
5) The replacement of slag by 5, 10 and 15 % MgO₅₅₀ reduced the drying shrinkage of AAS by ~40, 57 and 77% after 90 days. Also, the drying shrinkage results of M5-1000 show nearly the same value of M5-550, especially at later ages. The drying shrinkage of low reactive MgO₁₂₅₀ (M5-1250) is comparable that of M0, then the final shrinkage (at 90 day) of M5-1250 is decreased by 15% than that of M0.
6) The MgO reacts with GBFS to form Ht like phases which is responsible for the reduction of drying shrinkage of AAS as indicated by XRD, TG/DTG, and FTIR analyses.

References

Table 1: Chemical compositions of hydromagnesite and granulated blast-furnace slag (GBFS), wt. %

<table>
<thead>
<tr>
<th>Oxide</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>CaO</th>
<th>MgO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>SO₃</th>
<th>TiO₂</th>
<th>P₂O₅</th>
<th>L.O.I</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydromagnesite</td>
<td>0.09</td>
<td>0.08</td>
<td>0.01</td>
<td>0.4</td>
<td>42.95</td>
<td>-</td>
<td>0.18</td>
<td>0.04</td>
<td>-</td>
<td>0.03</td>
<td>56.19</td>
<td>99.94</td>
</tr>
<tr>
<td>GBFS</td>
<td>37.81</td>
<td>13.14</td>
<td>0.23</td>
<td>38.70</td>
<td>7.11</td>
<td>1.03</td>
<td>0.19</td>
<td>1.19</td>
<td>0.40</td>
<td>0.17</td>
<td>-</td>
<td>99.97</td>
</tr>
</tbody>
</table>

Table 2: Mix composition of blended slag-cement pastes

<table>
<thead>
<tr>
<th>Mix symbol</th>
<th>MgO wt. %</th>
<th>GBFS, wt. %</th>
<th>SH, wt. %</th>
<th>LSS wt. %</th>
<th>Water/Solid ratio</th>
<th>Calcination temperature, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>0</td>
<td>100</td>
<td>3</td>
<td>3</td>
<td>0.30</td>
<td>-</td>
</tr>
<tr>
<td>M5-550</td>
<td>5</td>
<td>95</td>
<td>3</td>
<td>3</td>
<td>0.30</td>
<td>550</td>
</tr>
<tr>
<td>M10-550</td>
<td>10</td>
<td>90</td>
<td>3</td>
<td>3</td>
<td>0.30</td>
<td>550</td>
</tr>
<tr>
<td>M15-550</td>
<td>15</td>
<td>85</td>
<td>3</td>
<td>3</td>
<td>0.30</td>
<td>550</td>
</tr>
<tr>
<td>M5-1000</td>
<td>5</td>
<td>95</td>
<td>3</td>
<td>3</td>
<td>0.30</td>
<td>1000</td>
</tr>
<tr>
<td>M5-1250</td>
<td>5</td>
<td>95</td>
<td>3</td>
<td>3</td>
<td>0.30</td>
<td>1250</td>
</tr>
</tbody>
</table>

Figure 1: XRD pattern of hydromagnesite and slag samples

Figure 2: Particle sizes distribution of hydromagnesite and MgO₅₅₀, MgO₁₀₀₀ and MgO₁₂₅₀

Figure 3: DTA thermogram of hydromagnesite

Figure 4: XRD pattern of MgO calcined at 550, 1000 and 1250°C
Figure 5: Determination reactivity of MgOs by acetic acid test

Figure 6: Compressive strength of AAS bleded with (a) 5, 10 and 15% of MgO550 and (b) 5% of MgO550, MgO1000 and MgO1250

Figure 7: Dring shrinkage of AAS containing 0, 5, 10 and 15 wt., % MgO550 as well as 5wt., % MgO

Figure 8: XRD diffractograms of reference specimens and AAS-MgO blends after (a) 1 day and (b) 28 days
Figure 9: TGA (a) and DTG (b) of AAS and AAS-MgO blends after 1 day

Figure 10: TGA (a) and DTG (b) of AAS and AAS-MgO blends after 28 days

Figure 11: FTIR spectra of AAS and ASS-MgO blends after (a) 1 day and (b) 28 days