Efficient Query Evaluation over Wide Sparse Table

Akshatha Dange K¹, Siddanagowda G R²

¹ M-Tech, CSE, Department of Computer Science and Engineering, Mangalore Institute of Technology and Engineering (MITE)
Moodbidri, Mangalore, Karnataka, India

²Assistant Professor, Department of Computer Science and Engineering, Mangalore Institute of Technology and Engineering (MITE)
Moodbidri, Mangalore, Karnataka, India

Abstract: This paper presents how efficiently the data can be retrieved from wide sparse table. The term wide sparse table refers to database table which consists of several attribute values. In traditional database we use SQL queries to retrieve the data. There are several existing mapping techniques that deliver satisfactory query performance. Here the concept of indexing is used to map XML data to wide sparse database. Also we translate XML queries into SQL queries.

Keywords: indexing, query, SQL, Wide sparse Table, XML.

1. Introduction

Internet is an important media used by humans as part of their life. XML (Extensible Markup Language) is recently used as standard to represent data over internet. Usually we use relational database to store data. Relational databases is collection of multiple dataset organized in the form of tables. Normally table is made up of rows and columns. XML data can be mapped to rows and columns of relational database table called as shredding. In case sparse database is table which contains several attributes values such as e-commerce database, storing and retrieving sparse data in traditional database can be done. There are several issues with relational database approach for sparse database storage and retrieval, they are storage space, time consumption.

In traditional database during normal retrieval of sparse data from database SQL (Structured Query Language) queries are used which needs to scan entire sparse database which is not efficient. Writing SQL queries for sparse, database table is a challenging task since there are several attributes. To overcome this problem the concept of mapping of xml data to sparse database is used. The advantage of this approach is data storage, retrieval is optimised and it is time efficient. The rest of the paper is organized as follows: Section II presents literature survey, section III presents methodology, section IV provides the expected outcome, and section V concludes the paper.

2. Literature Survey

Liang Jeff Chen proposed [1] XML data is mainly supported by SQL database system. It explains about sparse mapping and selective sparse mapping. Sparse mapping is entire xml document is mapped to sparse columns. Selective sparse mapping is an index mechanism that maps interested part of xml document to sparse table. The main disadvantage of this approach is data which is relevant cannot be retrieved. D. Chamberlin and D. Floreescu proposed that [2] how XML functionality fits into relational database management systems. It also explains storing XML in relational database system, querying and manipulating XML data, XML typing and validation

I.Tatarinov, S.Viglas, K.S.Beyer, J. Shanmugasundara, E. J.Shekita and C. Zhang proposes [4] that XML is mainly used exchange data over internet. Storing and querying these XML documents is challenging task. It also specifies that researches have proposed that relational database systems can be used to satisfy these requirements by shredding XML documents into relations, and translate XML queries into SQL queries over these relations. It also specifies the order encoding method that is normally used to represent XML order. It also describes algorithm to translate ordered XML queries into SQL. The disadvantage of this approach is relational optimizer may not understand XML hierarchical structure.

3. Methodology

We considered an example related to student database for University. Every University will have student database consisting large amount of student details. Retrieving these data using SQL queries is time consuming. Here the numerical indexing technique is used. Figure 1 shows the block diagram of proposed system. The proposed system consists of two modules

1) Admin
2) User

Here registered user login first selects attribute, searches the attribute values. The data is retrieved from the sparse database along with it time is displayed if data is not present in xml files. Now admin login with valid username and password. Admin similarly searches the attribute value, selects and map the data to xml files. Now when again login and searches for data, now the data is present in the xml files, time is displayed. Here the concept of translation of XML queries into SQL is used.
4. Expected Outcome

The above Figure 2 shows the expected results which is represented graphically. It shows time taken to retrieve data from XML mapping approach is less compared to time taken to retrieve data from database.

5. Conclusion

The proposed system mainly focuses on the efficiency of data retrieval. XML data is mapped to a sparse table and queried. It also measures time taken to retrieve data using XML and SQL queries from sparse table is calculated and compared.

References


