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Abstract: The primary purpose of this paper is to provide an in-depth analysis of different platforms available for performing big data 

analytics. This paper surveys different hardware platforms available for big data analytics and assesses the advantages and drawbacks of 

each of these platforms based on various metrics such as scalability, data I/O rate, fault tolerance, real-time processing, data size 

supported and iterative task support. In addition to the hardware, a detailed description of the software frameworks used within each of 

these platforms is also discussed along with their strengths and drawbacks. Some of the critical characteristics described here can 

potentially aid the readers in making an informed decision about the right choice of platforms depending on their computational needs. 

Using a star ratings table, a rigorous qualitative comparison between different platforms is also discussed for each of the six 

characteristics that are critical for the algorithms of big data analytics. In order to provide more insights into the effectiveness of each of 

the platform in the context of big data analytics, specific implementation level details of the widely used k-means clustering algorithm on 

various platforms are also described in the form pseudo code. 
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1. Introduction 
 

This is an era of Big Data. Big Data is driving radical 

changes in traditional data analysis platforms. To perform 

any kind of analysis on such voluminous and complex data, 

scaling up the hardware platforms becomes imminent and 

choosing the right hardware/software platforms becomes a 

crucial decision if the user‟s requirements are to be satisfied 

in a reasonable amount of time. Researchers have been 

working on building novel data analysis techniques for big 

data more than ever before which has led to the continuous 

development of many different algorithms and platforms. 

There are several big data platforms available with different 

characteristics and choosing the right platform requires an in-

depth knowledge about the capabilities of all these 

platforms [1]. Especially, the ability of the platform to adapt 

to increased data processing demands plays a critical role in 

deciding if it is appropriate to build the analytics based 

solutions on a particular platform. To this end, we will first 

provide a thorough understanding of all the popular big data 

platforms that are currently being used in practice and 

highlight the advantages and drawbacks of each of them. 

Typically, when the user has to decide the right platforms to 

choose from, he/she will have to investigate what their 

application/algorithm needs are. One will come across a few 

fundamental issues in their mind before making the right 

decisions. 

 How quickly do we need to get the results? 

 How big is the data to be processed? 

 Does the model building require several iterations 

or a single iteration? 

Clearly, these concerns are application/algorithm dependent 

that one needs to address before analyzing the 

systems/platform-level requirements. At the systems level, 

one has to meticulously look into the following concerns: 

 Will there be a need for more data processing 

capability in the future? 

 Is the rate of data transfer critical for this 

application? 

 Is there a need for handling hardware failures within 

the application? 

In this paper, we will provide a more rigorous analysis of 

these concerns and provide a score for each of the big data 

platforms with respect to these issues. 

While there are several works that partly describe some of 

the above mentioned concerns, to the best of our knowledge, 

there is no existing work that compares different platforms 

based on these essential components of big data analytics. 

Our work primarily aims at characterizing these concerns 

and focuses on comparing all the platforms based on these 

various optimal characteristics, thus providing some 

guidelines about the suitability of different platforms for 

various kinds of scenarios that arise while performing big 

data analytics in practice. 

In order to provide a more comprehensive understanding of 

the different aspects of the big data problem and how they 

are being handled by these platforms, we will provide a case 

study on the implementation of k-means clustering algorithm 

on various big data platforms. The k-means clustering was 

chosen here not only because of its popularity, but also due 

to the various dimensions of complexity involved with the 

algorithm such as being iterative, compute-intensive, and 

having the ability to parallelize some of the computations. 

We will provide a detailed pseudocode of the 

implementation of the k-means clustering algorithm on 
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different hardware and software platforms and provide an in-

depth analysis and insights into the algorithmic details. 

The major contributions of this paper are as follows: 

Illustrate the scaling of various big data analytics platforms 

and demonstrate the advantages and drawbacks of each of 

these platforms including the software frameworks. 

Provide a systematic evaluation of various big data platforms 

based on important characteristics that are pertinent to big 

data analytics in order to aid the users with a better 

understanding about the suitability of these platforms for 

different problem scenarios. 

2. Scaling 
 

Scaling is the ability of the system to adapt to increased 

demands in terms of data processing. To support big data 

processing, different platforms incorporate scaling in 

different forms. From a broader perspective, the big data 

platforms can be categorized into the following two types of 

scaling: 

Horizontal Scaling: Horizontal scaling involves distributing 

the workload across many servers which may be even 

commodity machines. It is also known as “scale out”, where 

multiple independent machines are added together in order to 

improve the processing capability. Typically, multiple 

instances of the operating system are running on separate 

machines. 

Vertical Scaling: Vertical Scaling involves installing more 

processors, more memory and faster hardware, typically, 

within a single server. It is also known as “scale up” and it 

usually involves a single instance of an operating system. 

 

Table 1 compares the advantages and drawbacks of 

horizontal and vertical scaling. While scaling up vertically 

can make the management and installation straight-forward, 

it limits the scaling ability of a platform since it will require 

substantial financial investment. To handle future workloads, 

one always will have to add hardware which is more 

powerful than the current requirements due to limited space 

and the number of expansion slots available in a single 

machine. This forces the user to invest more than what is 

required for his current processing needs. 

 

On the other hand, horizontal scale out gives users the ability 

to increase the performance in small increments which 

lowers the financial investment. Also, there is no limit on the 

amount of scaling that can done and one can horizontally 

scale out the system as much as needed. In spite of these 

advantages, the main drawback is the limited availability of 

software frameworks that can effectively utilize horizontal 

scaling. 

 

3. Horizontal Scaling Platform 
 

Some of the prominent horizontal scale out platforms 

includes peer-to-peer networks and Apache Hadoop. 

Recently, researchers have also been working on developing 

the next generation of horizontal scale out tools such as 

Spark [2] to overcome the limitations of other platforms. We 

will now discuss each of these platforms in more detail in 

this section. 

 

Table 1: A comparison of advantages and drawbacks of 

horizontal and vertical scaling 

 

Scaling Advantages Drawbacks 

Horizontal 

scaling 

Increases 

performance in 

small steps as 

needed 

 Software has to handle all 

the data distribution and 

parallel processing 

complexities 

 Financial 

investment to 

upgrade is relatively 

less 

Limited number of software 

are available that can take 

advantage of horizontal 

scaling 
Can scale out the 

system as much as 

needed 

Vertical 

scaling 

 Most of the 

software can easily 

take advantage of 

vertical scaling 

 Requires substantial 

financial investment 

 Easy to manage and 

install hardware 

within a single 

machine 

System has to be more 

powerful to handle future 

workloads and initially the 

additional performance in 

not fully utilized 

 It is not possible to scale up 

vertically after a certain 

limit 

 

3.1 Peer to Peer Network 

Peer-to-Peer networks [3],[4] involve millions of machines 

connected in a network. It is a decentralized and distributed 

network architecture where the nodes in the networks 

(known as peers) serve as well as consume resources. It is 

one of the oldest distributed computing platforms in 

existence. Typically, Message Passing Interface (MPI) is the 

communication scheme used in such a setup to communicate 

and exchange the data between peers. Each node can store 

the data instances and the scale out is practically unlimited 

(can be millions of nodes). 

 

The major bottleneck in such a setup arises in the 

communication between different nodes. Broadcasting 

messages in a peer-to-peer network is cheaper but the 

aggregation of data/results is much more expensive. In 

addition, the messages are sent over the network in the form 

of a spanning tree with an arbitrary node as the root where 

the broadcasting is initiated. 

MPI, which is the standard software communication 

paradigm used in this network, has been in use for several 

years and is well-established and thoroughly debugged. One 

of the main features of MPI includes the state preserving 

process i.e., processes can live as long as the system runs and 

there is no need to read the same data again and again as in 

the case of other frameworks such as MapReduce (explained 

in section “Apache hadoop”). All the parameters can be 

preserved locally. Hence, unlike MapReduce, MPI is well 

suited for iterative processing [5]. Another feature of MPI is 

the hierarchical master/slave paradigm. When MPI is 

deployed in the master–slave model, the slave machine can 

become the master for other processes. This can be 
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extremely useful for dynamic resource allocation where the 

slaves have large amounts of data to process. 

 

MPI is available for many programming languages. It 

includes methods to send and receive messages and data. 

Some other methods available with MPI are „Broadcast‟, 

which is used to broadcast the data or messages over all the 

nodes and „Barrier‟, which is another method that can put a 

barrier and allows all the processes to synchronize and reach 

up to a certain point before proceeding further. 

Although MPI appears to be perfect for developing 

algorithms for big data analytics, it has some major 

drawbacks. One of the primary drawbacks is the fault 

intolerance since MPI has no mechanism to handle faults. 

When used on top of peer-to-peer networks, which is a 

completely unreliable hardware, a single node failure can 

cause the entire system to shut down. Users have to 

implement some kind of fault tolerance mechanism within 

the program to avoid such unfortunate situations. With other 

frameworks such as Hadoop (that are robust to fault 

tolerance) becoming widely popular, MPI is not being 

widely used anymore. 

3.2 Apache Hadoop 

Apache Hadoop [6] is an open source framework for storing 

and processing large datasets using clusters of commodity 

hardware. Hadoop is designed to scale up to hundreds and 

even thousands of nodes and is also highly fault tolerant. The 

various components of a Hadoop Stack are shown in 

Figure 1. The Hadoop platform contains the following two 

important components: 

 

Distributed File System (HDFS) [7] is a distributed file 

system that is used to store data across cluster of commodity 

machines while providing high availability and fault 

tolerance. 

 

Hadoop YARN [8] is a resource management layer and 

schedules the jobs across the cluster. 

 

 
Figure 1: Hadoop Stack showing different components. 

 

3.2.1 MapReduce 

The programming model used in Hadoop is MapReduce [9] 

which was proposed by Dean and Ghemawat at Google. 

MapReduce is the basic data processing scheme used in 

Hadoop which includes breaking the entire task into two 

parts, known as mappers and reducers. At a high-level, 

mappers read the data from HDFS, process it and generate 

some intermediate results to the reducers. Reducers are used 

to aggregate the intermediate results to generate the final 

output which is again written to HDFS. A typical Hadoop 

job involves running several mappers and reducers across 

different nodes in the cluster. A good survey about 

MapReduce for parallel data processing is available in [10]. 

 

3.2.2 MapReduce Wrapper 

 

A certain set of wrappers are currently being developed for 

MapReduce. These wrappers can provide a better control 

over the MapReduce code and aid in the source code 

development. The following wrappers are being widely used 

in combination with MapReduce. 

 

Apache Pig is a SQL-like environment developed at 

Yahoo [11] is being used by many organizations like Yahoo, 

Twitter, AOL, LinkedIn etc. Hive is another MapReduce 

wrapper developed by Facebook [12]. These two wrappers 

provide a better environment and make the code 

development simpler since the programmers do not have to 

deal with the complexities of MapReduce coding. 

 

Programming environments such as DryadLINQ, on the 

other hand, provide the end users with more flexibility over 

the MapReduce by allowing the users to have more control 

over the coding. It is a C# like environment developed at 

Microsoft Research [13]. It uses LINQ (a parallel language) 

and a cluster execution environment called Dryad. The 

advantages include better debugging and development using 

Visual Studio as the tool and interoperation with other 

languages such as standard .NET. 

 

In addition to these wrappers, some researchers have also 

developed scalable machine learning libraries such as 

Mahout [14] using MapReduce paradigm. 

 

3.2.3 Limitation of MapReduce 

 

One of the major drawbacks of MapReduce is its 

inefficiency in running iterative algorithms. MapReduce is 

not designed for iterative processes. Mappers read the same 

data again and again from the disk. Hence, after each 

iteration, the results have to be written to the disk to pass 

them onto the next iteration. This makes disk access a major 

bottleneck which significantly degrades the performance. For 

each iteration, a new mapper and reducer have to be 

initialized. Sometimes the MapReduce jobs are short-lived in 

which case the overhead of initialization of that task 

becomes a significant overhead to the task itself. Some 

workarounds such as forward scheduling (setting up the next 

MapReduce job before the previous one finishes) have been 

proposed. However, these approaches introduce additional 

levels of complexity in the source code. One such work 

called HaLoop [15] extends MapReduce with programming 

support for iterative algorithms and improves efficiency by 

adding caching mechanisms. CGL MapReduce [16],[17] is 

another work that focuses on improving the performance of 

MapReduce iterative tasks. Other examples of iterative 

MapReduce include Twister [18] and imapreduce [19]. 
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4. Vertical Scaling Platform 

 

The most popular vertical scale up paradigms is High 

Performance Computing Clusters (HPC), Multicore 

processors, Graphics Processing Unit (GPU) and Field 

Programmable Gate Arrays (FPGA). We describe each of 

these platforms and their capabilities in the following 

sections. 

4.1 High performance computing (HPC) cluster 

 

HPC clusters [20], also called as blades or supercomputers, 

are machines with thousands of cores. They can have a 

different variety of disk organization, cache, communication 

mechanism etc. depending upon the user requirement. These 

systems use well-built powerful hardware which is optimized 

for speed and throughput. Because of the top quality high-

end hardware, fault tolerance in such systems is not 

problematic since hardware failures are extremely rare. The 

initial cost of deploying such a system can be very high 

because of the use of the high-end hardware. They are not as 

scalable as Hadoop or Spark clusters but they are still 

capable of processing terabytes of data. The cost of scaling 

up such a system is much higher compared to Hadoop or 

Spark clusters. The communication scheme used for such 

platforms is typically MPI. We already discussed about MPI 

in the peer-to-peer systems (see section “Peer-to-peer 

networks”). Since fault tolerance is not an important issue in 

this case, MPIs‟ lack of fault tolerance mechanism does not 

come as a significant drawback here. 

 

4.2 Multicore CPU 

Multicore refers to one machine having dozens of processing 

cores [21]. They usually have shared memory but only one 

disk. Over the past few years, CPUs have gained internal 

parallelism. More recently, the number of cores per chip and 

the number of operations that a core can perform has 

increased significantly. Newer breeds of motherboards allow 

multiple CPUs within a single machine thereby increasing 

the parallelism. Until the last few years, CPUs were mainly 

responsible for accelerating the algorithms for big data 

analytics. 

 

Figure 3(a) shows a high-level CPU architecture with four 

cores. The parallelism in CPUs is mainly achieved through 

multithreading [22]. All the cores share the same memory. 

The task has to be broken down into threads. Each thread is 

executed in parallel on different CPU cores. Most of the 

programming languages provide libraries to create threads 

and use CPU parallelism. The most popular choice of such 

programming languages is Java. Since multicore CPUs have 

been around for several years, a large number of software 

applications and programming environments are well 

developed for this platform. The developments in CPUs are 

not at the same pace compared to GPUs. The number of 

cores per CPU is still in double digits with the processing 

power close to 10Gflops while a single GPU has more than 

2500 processing cores with 1000Tflops of processing power. 

This massive parallelism in GPU makes it a more appealing 

option for parallel computing applications. 

 

The drawback of CPUs is their limited number of processing 

cores and their primary dependence on the system memory 

for data access. System memory is limited to a few hundred 

gigabytes and this limits the size of the data that a CPU can 

process efficiently. Once the data size exceeds the system 

memory, disk access becomes a huge bottleneck. Even if the 

data fits into the system memory, CPU can process data at a 

much faster rate than the memory access speed which makes 

memory access a bottleneck. GPU avoids this by making use 

of DDR5 memory compared to a slower DDR3 memory 

used in a system. Also, GPU has high speed cache for each 

multiprocessor which speeds up the data access. 

 

 
Figure 2: A comparison between the architectures of CPU 

(a) and GPU (b) showing the arrangement of processing 

cores. 

 

4.3 Graphics Processing Unit (GPU) 

 

Graphics Processing Unit (GPUs) is a specialized hardware 

designed to accelerate the creation of images in a frame 

buffer intended for display output [23]. Until the past few 

years, GPUs were primarily used for graphical operations 

such as video and image editing, accelerating graphics-

related processing etc. However, due to their massively 

parallel architecture, recent developments in GPU hardware 

and related programming frameworks have given rise to 

GPGPU (general-purpose computing on graphics processing 

units) [24]. GPU has large number of processing cores 

(typically around 2500+ to date) as compared to a multicore 

CPU. In addition to the processing cores, GPU has its own 

high throughput DDR5 memory which is many times faster 

than a typical DDR3 memory. GPU performance has 

increased significantly in the past few years compared to that 

of CPU. Recently, Nvidia has launched Tesla series of GPUs 

which are specifically designed for high performance 

computing. Nvidia has released the CUDA framework which 

made GPU programming accessible to all programmers 

without delving into the hardware details. These 

Paper ID: SUB154338 1167



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 5, May 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

developments suggest that GPGPU is indeed gaining more 

popularity. Figure 3(b) shows a high-level GPU architecture 

with 14 multiprocessors and 32 streaming processors per 

block. It usually has two levels of parallelism. At the first 

level, there are several multiprocessors (MPs) and within 

each multiprocessor there are several streaming processors 

(SPs). To use this setup, GPU program is broken down into 

threads which execute on SPs and these threads are grouped 

together to form thread blocks which run on a 

multiprocessor. Each thread within a block can communicate 

with each other and synchronize with other threads in the 

same block. Each of these threads has access to small but 

extremely fast shared cache memory and larger global main 

memory. Threads in one block cannot communicate with the 

threads in the other block as they may be scheduled at 

different times. This architecture implies that for any job to 

be run on GPU, it has to be broken into blocks of 

computation that can run independently without 

communicating with each other [24]. These blocks will have 

to be further broken down into smaller tasks that execute on 

an individual thread that may communicate with other 

threads in the same block. 

 

GPUs have been used in the development of faster machine 

learning algorithms. Some libraries such as 

GPUMiner implement few machine learning algorithms on 

GPU using the CUDA framework. Experiments have shown 

many folds speedup using the GPU compared to a multicore 

CPU. 

 

GPU has its own drawbacks. The primary drawback is the 

limited memory that it contains. With a maximum of 12GB 

memory per GPU (as of current generation), it is not suitable 

to handle terabyte scale data. Once the data size is more than 

the size of the GPU memory, the performance decreases 

significantly as the disk access becomes the primary 

bottleneck. Another drawback is the limited amount of 

software and algorithms that are available for GPUs. 

Because of the way in which the task breakdown is required 

for GPUs, not many existing analytical algorithms are easily 

portable to GPUs. 

5. Conclusion and Future Direction 

This paper surveys various data processing platforms that are 

currently available and discusses the advantages and 

drawbacks for each of them. Several details on each of these 

hardware platforms along with some of the popular software 

frameworks such as Hadoop and Spark are also provided. 

The future work involves investigating more algorithms such 

as decision trees, nearest neighbor, pagerank etc. over 

different platforms. For empirical evaluation, different 

experiments involving varying data size and response times 

can be performed over various platforms for different 

algorithms. Through such an analysis we will get valuable 

insights which can be useful in many practical and research 

applications. One other important direction of research will 

be to choose the right platform for a particular application. 
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