
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Survey on Scalable Big Data Analytics Platform

Ravindra Phule
1
, Madhav Ingle

2

1Savitribai Phule Pune University, Jayawantrao Sawant College of Engineering,

Handewadi Road, Hadapsar 411028, India

2Savitribai Phule Pune University, Jayawantrao Sawant College of Engineering,

Handewadi Road, Hadapsar 411028, India

Abstract: The primary purpose of this paper is to provide an in-depth analysis of different platforms available for performing big data

analytics. This paper surveys different hardware platforms available for big data analytics and assesses the advantages and drawbacks of

each of these platforms based on various metrics such as scalability, data I/O rate, fault tolerance, real-time processing, data size

supported and iterative task support. In addition to the hardware, a detailed description of the software frameworks used within each of

these platforms is also discussed along with their strengths and drawbacks. Some of the critical characteristics described here can

potentially aid the readers in making an informed decision about the right choice of platforms depending on their computational needs.

Using a star ratings table, a rigorous qualitative comparison between different platforms is also discussed for each of the six

characteristics that are critical for the algorithms of big data analytics. In order to provide more insights into the effectiveness of each of

the platform in the context of big data analytics, specific implementation level details of the widely used k-means clustering algorithm on

various platforms are also described in the form pseudo code.

Keywords: Big data; MapReduce, graphics processing units; scalability, big data analytics; big data platforms, real-time processing.

1. Introduction

This is an era of Big Data. Big Data is driving radical

changes in traditional data analysis platforms. To perform

any kind of analysis on such voluminous and complex data,

scaling up the hardware platforms becomes imminent and

choosing the right hardware/software platforms becomes a

crucial decision if the user‟s requirements are to be satisfied

in a reasonable amount of time. Researchers have been

working on building novel data analysis techniques for big

data more than ever before which has led to the continuous

development of many different algorithms and platforms.

There are several big data platforms available with different

characteristics and choosing the right platform requires an in-

depth knowledge about the capabilities of all these

platforms [1]. Especially, the ability of the platform to adapt

to increased data processing demands plays a critical role in

deciding if it is appropriate to build the analytics based

solutions on a particular platform. To this end, we will first

provide a thorough understanding of all the popular big data

platforms that are currently being used in practice and

highlight the advantages and drawbacks of each of them.

Typically, when the user has to decide the right platforms to

choose from, he/she will have to investigate what their

application/algorithm needs are. One will come across a few

fundamental issues in their mind before making the right

decisions.

 How quickly do we need to get the results?

 How big is the data to be processed?

 Does the model building require several iterations

or a single iteration?

Clearly, these concerns are application/algorithm dependent

that one needs to address before analyzing the

systems/platform-level requirements. At the systems level,

one has to meticulously look into the following concerns:

 Will there be a need for more data processing

capability in the future?

 Is the rate of data transfer critical for this

application?

 Is there a need for handling hardware failures within

the application?

In this paper, we will provide a more rigorous analysis of

these concerns and provide a score for each of the big data

platforms with respect to these issues.

While there are several works that partly describe some of

the above mentioned concerns, to the best of our knowledge,

there is no existing work that compares different platforms

based on these essential components of big data analytics.

Our work primarily aims at characterizing these concerns

and focuses on comparing all the platforms based on these

various optimal characteristics, thus providing some

guidelines about the suitability of different platforms for

various kinds of scenarios that arise while performing big

data analytics in practice.

In order to provide a more comprehensive understanding of

the different aspects of the big data problem and how they

are being handled by these platforms, we will provide a case

study on the implementation of k-means clustering algorithm

on various big data platforms. The k-means clustering was

chosen here not only because of its popularity, but also due

to the various dimensions of complexity involved with the

algorithm such as being iterative, compute-intensive, and

having the ability to parallelize some of the computations.

We will provide a detailed pseudocode of the

implementation of the k-means clustering algorithm on

Paper ID: SUB154338 1164

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.unipune.ac.in%2F&ei=VD9IVYvlA8KhmQXz2IDAAg&usg=AFQjCNFT3-7Wk7w2Bd8yK39ONuGdrNheeA&bvm=bv.92291466,d.dGY
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.unipune.ac.in%2F&ei=VD9IVYvlA8KhmQXz2IDAAg&usg=AFQjCNFT3-7Wk7w2Bd8yK39ONuGdrNheeA&bvm=bv.92291466,d.dGY
http://www.journalofbigdata.com/content/2/1/8#B1

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

different hardware and software platforms and provide an in-

depth analysis and insights into the algorithmic details.

The major contributions of this paper are as follows:

Illustrate the scaling of various big data analytics platforms

and demonstrate the advantages and drawbacks of each of

these platforms including the software frameworks.

Provide a systematic evaluation of various big data platforms

based on important characteristics that are pertinent to big

data analytics in order to aid the users with a better

understanding about the suitability of these platforms for

different problem scenarios.

2. Scaling

Scaling is the ability of the system to adapt to increased

demands in terms of data processing. To support big data

processing, different platforms incorporate scaling in

different forms. From a broader perspective, the big data

platforms can be categorized into the following two types of

scaling:

Horizontal Scaling: Horizontal scaling involves distributing

the workload across many servers which may be even

commodity machines. It is also known as “scale out”, where

multiple independent machines are added together in order to

improve the processing capability. Typically, multiple

instances of the operating system are running on separate

machines.

Vertical Scaling: Vertical Scaling involves installing more

processors, more memory and faster hardware, typically,

within a single server. It is also known as “scale up” and it

usually involves a single instance of an operating system.

Table 1 compares the advantages and drawbacks of

horizontal and vertical scaling. While scaling up vertically

can make the management and installation straight-forward,

it limits the scaling ability of a platform since it will require

substantial financial investment. To handle future workloads,

one always will have to add hardware which is more

powerful than the current requirements due to limited space

and the number of expansion slots available in a single

machine. This forces the user to invest more than what is

required for his current processing needs.

On the other hand, horizontal scale out gives users the ability

to increase the performance in small increments which

lowers the financial investment. Also, there is no limit on the

amount of scaling that can done and one can horizontally

scale out the system as much as needed. In spite of these

advantages, the main drawback is the limited availability of

software frameworks that can effectively utilize horizontal

scaling.

3. Horizontal Scaling Platform

Some of the prominent horizontal scale out platforms

includes peer-to-peer networks and Apache Hadoop.

Recently, researchers have also been working on developing

the next generation of horizontal scale out tools such as

Spark [2] to overcome the limitations of other platforms. We

will now discuss each of these platforms in more detail in

this section.

Table 1: A comparison of advantages and drawbacks of

horizontal and vertical scaling

Scaling Advantages Drawbacks

Horizontal

scaling

Increases

performance in

small steps as

needed

 Software has to handle all

the data distribution and

parallel processing

complexities

 Financial

investment to

upgrade is relatively

less

Limited number of software

are available that can take

advantage of horizontal

scaling
Can scale out the

system as much as

needed

Vertical

scaling

 Most of the

software can easily

take advantage of

vertical scaling

 Requires substantial

financial investment

 Easy to manage and

install hardware

within a single

machine

System has to be more

powerful to handle future

workloads and initially the

additional performance in

not fully utilized

 It is not possible to scale up

vertically after a certain

limit

3.1 Peer to Peer Network

Peer-to-Peer networks [3],[4] involve millions of machines

connected in a network. It is a decentralized and distributed

network architecture where the nodes in the networks

(known as peers) serve as well as consume resources. It is

one of the oldest distributed computing platforms in

existence. Typically, Message Passing Interface (MPI) is the

communication scheme used in such a setup to communicate

and exchange the data between peers. Each node can store

the data instances and the scale out is practically unlimited

(can be millions of nodes).

The major bottleneck in such a setup arises in the

communication between different nodes. Broadcasting

messages in a peer-to-peer network is cheaper but the

aggregation of data/results is much more expensive. In

addition, the messages are sent over the network in the form

of a spanning tree with an arbitrary node as the root where

the broadcasting is initiated.

MPI, which is the standard software communication

paradigm used in this network, has been in use for several

years and is well-established and thoroughly debugged. One

of the main features of MPI includes the state preserving

process i.e., processes can live as long as the system runs and

there is no need to read the same data again and again as in

the case of other frameworks such as MapReduce (explained

in section “Apache hadoop”). All the parameters can be

preserved locally. Hence, unlike MapReduce, MPI is well

suited for iterative processing [5]. Another feature of MPI is

the hierarchical master/slave paradigm. When MPI is

deployed in the master–slave model, the slave machine can

become the master for other processes. This can be

Paper ID: SUB154338 1165

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

extremely useful for dynamic resource allocation where the

slaves have large amounts of data to process.

MPI is available for many programming languages. It

includes methods to send and receive messages and data.

Some other methods available with MPI are „Broadcast‟,

which is used to broadcast the data or messages over all the

nodes and „Barrier‟, which is another method that can put a

barrier and allows all the processes to synchronize and reach

up to a certain point before proceeding further.

Although MPI appears to be perfect for developing

algorithms for big data analytics, it has some major

drawbacks. One of the primary drawbacks is the fault

intolerance since MPI has no mechanism to handle faults.

When used on top of peer-to-peer networks, which is a

completely unreliable hardware, a single node failure can

cause the entire system to shut down. Users have to

implement some kind of fault tolerance mechanism within

the program to avoid such unfortunate situations. With other

frameworks such as Hadoop (that are robust to fault

tolerance) becoming widely popular, MPI is not being

widely used anymore.

3.2 Apache Hadoop

Apache Hadoop [6] is an open source framework for storing

and processing large datasets using clusters of commodity

hardware. Hadoop is designed to scale up to hundreds and

even thousands of nodes and is also highly fault tolerant. The

various components of a Hadoop Stack are shown in

Figure 1. The Hadoop platform contains the following two

important components:

Distributed File System (HDFS) [7] is a distributed file

system that is used to store data across cluster of commodity

machines while providing high availability and fault

tolerance.

Hadoop YARN [8] is a resource management layer and

schedules the jobs across the cluster.

Figure 1: Hadoop Stack showing different components.

3.2.1 MapReduce

The programming model used in Hadoop is MapReduce [9]

which was proposed by Dean and Ghemawat at Google.

MapReduce is the basic data processing scheme used in

Hadoop which includes breaking the entire task into two

parts, known as mappers and reducers. At a high-level,

mappers read the data from HDFS, process it and generate

some intermediate results to the reducers. Reducers are used

to aggregate the intermediate results to generate the final

output which is again written to HDFS. A typical Hadoop

job involves running several mappers and reducers across

different nodes in the cluster. A good survey about

MapReduce for parallel data processing is available in [10].

3.2.2 MapReduce Wrapper

A certain set of wrappers are currently being developed for

MapReduce. These wrappers can provide a better control

over the MapReduce code and aid in the source code

development. The following wrappers are being widely used

in combination with MapReduce.

Apache Pig is a SQL-like environment developed at

Yahoo [11] is being used by many organizations like Yahoo,

Twitter, AOL, LinkedIn etc. Hive is another MapReduce

wrapper developed by Facebook [12]. These two wrappers

provide a better environment and make the code

development simpler since the programmers do not have to

deal with the complexities of MapReduce coding.

Programming environments such as DryadLINQ, on the

other hand, provide the end users with more flexibility over

the MapReduce by allowing the users to have more control

over the coding. It is a C# like environment developed at

Microsoft Research [13]. It uses LINQ (a parallel language)

and a cluster execution environment called Dryad. The

advantages include better debugging and development using

Visual Studio as the tool and interoperation with other

languages such as standard .NET.

In addition to these wrappers, some researchers have also

developed scalable machine learning libraries such as

Mahout [14] using MapReduce paradigm.

3.2.3 Limitation of MapReduce

One of the major drawbacks of MapReduce is its

inefficiency in running iterative algorithms. MapReduce is

not designed for iterative processes. Mappers read the same

data again and again from the disk. Hence, after each

iteration, the results have to be written to the disk to pass

them onto the next iteration. This makes disk access a major

bottleneck which significantly degrades the performance. For

each iteration, a new mapper and reducer have to be

initialized. Sometimes the MapReduce jobs are short-lived in

which case the overhead of initialization of that task

becomes a significant overhead to the task itself. Some

workarounds such as forward scheduling (setting up the next

MapReduce job before the previous one finishes) have been

proposed. However, these approaches introduce additional

levels of complexity in the source code. One such work

called HaLoop [15] extends MapReduce with programming

support for iterative algorithms and improves efficiency by

adding caching mechanisms. CGL MapReduce [16],[17] is

another work that focuses on improving the performance of

MapReduce iterative tasks. Other examples of iterative

MapReduce include Twister [18] and imapreduce [19].

Paper ID: SUB154338 1166

http://www.journalofbigdata.com/content/2/1/8/figure/F1

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4. Vertical Scaling Platform

The most popular vertical scale up paradigms is High

Performance Computing Clusters (HPC), Multicore

processors, Graphics Processing Unit (GPU) and Field

Programmable Gate Arrays (FPGA). We describe each of

these platforms and their capabilities in the following

sections.

4.1 High performance computing (HPC) cluster

HPC clusters [20], also called as blades or supercomputers,

are machines with thousands of cores. They can have a

different variety of disk organization, cache, communication

mechanism etc. depending upon the user requirement. These

systems use well-built powerful hardware which is optimized

for speed and throughput. Because of the top quality high-

end hardware, fault tolerance in such systems is not

problematic since hardware failures are extremely rare. The

initial cost of deploying such a system can be very high

because of the use of the high-end hardware. They are not as

scalable as Hadoop or Spark clusters but they are still

capable of processing terabytes of data. The cost of scaling

up such a system is much higher compared to Hadoop or

Spark clusters. The communication scheme used for such

platforms is typically MPI. We already discussed about MPI

in the peer-to-peer systems (see section “Peer-to-peer

networks”). Since fault tolerance is not an important issue in

this case, MPIs‟ lack of fault tolerance mechanism does not

come as a significant drawback here.

4.2 Multicore CPU

Multicore refers to one machine having dozens of processing

cores [21]. They usually have shared memory but only one

disk. Over the past few years, CPUs have gained internal

parallelism. More recently, the number of cores per chip and

the number of operations that a core can perform has

increased significantly. Newer breeds of motherboards allow

multiple CPUs within a single machine thereby increasing

the parallelism. Until the last few years, CPUs were mainly

responsible for accelerating the algorithms for big data

analytics.

Figure 3(a) shows a high-level CPU architecture with four

cores. The parallelism in CPUs is mainly achieved through

multithreading [22]. All the cores share the same memory.

The task has to be broken down into threads. Each thread is

executed in parallel on different CPU cores. Most of the

programming languages provide libraries to create threads

and use CPU parallelism. The most popular choice of such

programming languages is Java. Since multicore CPUs have

been around for several years, a large number of software

applications and programming environments are well

developed for this platform. The developments in CPUs are

not at the same pace compared to GPUs. The number of

cores per CPU is still in double digits with the processing

power close to 10Gflops while a single GPU has more than

2500 processing cores with 1000Tflops of processing power.

This massive parallelism in GPU makes it a more appealing

option for parallel computing applications.

The drawback of CPUs is their limited number of processing

cores and their primary dependence on the system memory

for data access. System memory is limited to a few hundred

gigabytes and this limits the size of the data that a CPU can

process efficiently. Once the data size exceeds the system

memory, disk access becomes a huge bottleneck. Even if the

data fits into the system memory, CPU can process data at a

much faster rate than the memory access speed which makes

memory access a bottleneck. GPU avoids this by making use

of DDR5 memory compared to a slower DDR3 memory

used in a system. Also, GPU has high speed cache for each

multiprocessor which speeds up the data access.

Figure 2: A comparison between the architectures of CPU

(a) and GPU (b) showing the arrangement of processing

cores.

4.3 Graphics Processing Unit (GPU)

Graphics Processing Unit (GPUs) is a specialized hardware

designed to accelerate the creation of images in a frame

buffer intended for display output [23]. Until the past few

years, GPUs were primarily used for graphical operations

such as video and image editing, accelerating graphics-

related processing etc. However, due to their massively

parallel architecture, recent developments in GPU hardware

and related programming frameworks have given rise to

GPGPU (general-purpose computing on graphics processing

units) [24]. GPU has large number of processing cores

(typically around 2500+ to date) as compared to a multicore

CPU. In addition to the processing cores, GPU has its own

high throughput DDR5 memory which is many times faster

than a typical DDR3 memory. GPU performance has

increased significantly in the past few years compared to that

of CPU. Recently, Nvidia has launched Tesla series of GPUs

which are specifically designed for high performance

computing. Nvidia has released the CUDA framework which

made GPU programming accessible to all programmers

without delving into the hardware details. These

Paper ID: SUB154338 1167

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

developments suggest that GPGPU is indeed gaining more

popularity. Figure 3(b) shows a high-level GPU architecture

with 14 multiprocessors and 32 streaming processors per

block. It usually has two levels of parallelism. At the first

level, there are several multiprocessors (MPs) and within

each multiprocessor there are several streaming processors

(SPs). To use this setup, GPU program is broken down into

threads which execute on SPs and these threads are grouped

together to form thread blocks which run on a

multiprocessor. Each thread within a block can communicate

with each other and synchronize with other threads in the

same block. Each of these threads has access to small but

extremely fast shared cache memory and larger global main

memory. Threads in one block cannot communicate with the

threads in the other block as they may be scheduled at

different times. This architecture implies that for any job to

be run on GPU, it has to be broken into blocks of

computation that can run independently without

communicating with each other [24]. These blocks will have

to be further broken down into smaller tasks that execute on

an individual thread that may communicate with other

threads in the same block.

GPUs have been used in the development of faster machine

learning algorithms. Some libraries such as

GPUMiner implement few machine learning algorithms on

GPU using the CUDA framework. Experiments have shown

many folds speedup using the GPU compared to a multicore

CPU.

GPU has its own drawbacks. The primary drawback is the

limited memory that it contains. With a maximum of 12GB

memory per GPU (as of current generation), it is not suitable

to handle terabyte scale data. Once the data size is more than

the size of the GPU memory, the performance decreases

significantly as the disk access becomes the primary

bottleneck. Another drawback is the limited amount of

software and algorithms that are available for GPUs.

Because of the way in which the task breakdown is required

for GPUs, not many existing analytical algorithms are easily

portable to GPUs.

5. Conclusion and Future Direction

This paper surveys various data processing platforms that are

currently available and discusses the advantages and

drawbacks for each of them. Several details on each of these

hardware platforms along with some of the popular software

frameworks such as Hadoop and Spark are also provided.

The future work involves investigating more algorithms such

as decision trees, nearest neighbor, pagerank etc. over

different platforms. For empirical evaluation, different

experiments involving varying data size and response times

can be performed over various platforms for different

algorithms. Through such an analysis we will get valuable

insights which can be useful in many practical and research

applications. One other important direction of research will

be to choose the right platform for a particular application.

References

[1] Agneeswaran VS, Tonpay P, Tiwary J: Paradigms for

realizing machine learning algorithms.

[2] Big Data 2013, 1(4):207-214.

[3] Zaharia M, Chowdhury M, Franklin MJ, Shenker S,

Spark SI: Cluster Computing with Working Sets.

[4] Proceedings of the 2nd USENIX Conference on Hot

Topics in Cloud Computing 2010, 10-10.

[5] Milojicic DS, Kalogeraki V, Lukose R, Nagaraja K,

Pruyne J, Richard B, Rollins S, Xu Z:Peer-to-peer

computing. Technical Report HPL-2002-57, HP Labs.

2002

[6] Steinmetz R, Wehrle K: Peer-to-Peer Systems and

Applications. Springer Berlin, Heidelberg; 2005.

[7] Sievert O, Casanova H: A simple MPI process swapping

architecture for iterative applications. Int J High Perform

Comput Appl 2004, 18(3):341-352.

[8] [http://hadoop.apache.org/]. Hadoop.

[9] Borthakur D: HDFS architecture guide. HADOOP

APACHE PROJECT. 2008.

[10] Vavilapalli VK, Murthy AC, Douglas C, Agarwal S,

Konar M, Evans R, Graves T, Lowe J, Shah H, Seth

S: Apache hadoop yarn: Yet another resource negotiator.

[11] Proceedings of the 4th annual Symposium on Cloud

Computing 2013, 5

[12] Dean J, Ghemawat S: MapReduce: simplified data

processing on large clusters. Commun

ACM 2008, 51(1):107-113

[13] Lee K-H, Lee Y-J, Choi H, Chung YD, Moon

B: Parallel data processing with MapReduce: a survey.

ACM SIGMOD Record 2012, 40(4):11-20.

[14] Olston C, Reed B, Srivastava U, Kumar R, Tomkins

A: Pig latin: a not-so-foreign language for data

processing. In Proceedings of the ACM SIGMOD

international conference on Management of Data. ACM;

2008:1099-1110.

[15] Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P,

Anthony S, Liu H, Wyckoff P, Murthy R:Hive: a

warehousing solution over a map-reduce framework.

Proceedings of the VLDB

Endowment 2009, 2(2):16261629.

[16] Yu Y, Isard M, Fetterly D, Budiu M, Erlingsson Ú,

Gunda PK, Currey J: DryadLINQ: A System for

General-Purpose Distributed Data-Parallel Computing

Using a High-Level Language.OSDI 2008, 1-14.

[17] Owen S, Anil R, Dunning T, Friedman E: Mahout in

Action. Manning. 2011.

[18] Bu Y, Howe B, Balazinska M, Ernst MD: HaLoop:

efficient iterative data processing on large clusters.

Proceedings of the VLDB Endowment 2010, 3(1–2):285

296.

[19] Ekanayake J, Pallickara S, Fox G: Mapreduce for data

intensive scientific analyses. Proceedings of IEEE

Fourth International Conference on eScience 2008, 277-

284.

Paper ID: SUB154338 1168

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[20] Palit I, Reddy CK: Scalable and parallel boosting with

MapReduce. IEEE Trans Knowl Data

Eng 2012, 24(10):1904-1916.

[21] Ekanayake J, Li H, Zhang B, Gunarathne T, Bae S-H,

Qiu J, Fox G (2010) Twister: a runtime for iterative

mapreduce. In: Proceedings of the 19th ACM

International Symposium on High Performance

Distributed Computing. ACM, pp 810–818

[22] Zhang Y, Gao Q, Gao L, Wang C: Imapreduce: a

distributed computing framework for iterative

computation. J Grid Comput 2012, 10(1):47-68.

[23] Buyya R: High Performance Cluster Computing:

Architectures and Systems (Volume 1). Prentice Hall,

Upper SaddleRiver, NJ, USA; 1999. Bekkerman R,

Bilenko M, Langford J (2012) Scaling up Machine

Learning: Parallel and Distributed Approaches.

Cambridge University Press

[24] Tullsen DM, Eggers SJ, Levy HM: Simultaneous

Multithreading: Maximizing on-Chip Parallelism. ACM

SIGARCH Computer Architecture News 1995, 392-

403.

[25] Owens JD, Houston M, Luebke D, Green S, Stone JE,

Phillips JC: GPU computing. Proc

IEEE 2008, 96(5):879-899.

[26] Nickolls J, Dally WJ: The GPU computing era. IEEE

Micro 2010, 30(2):56-69.

[27] Hong S, Kim H: An analytical Model for a GPU

Architecture with Memory-Level and Thread-Level

Parallelism Awareness. ACM SIGARCH Computer

Architecture News 2009, 152-163.

Paper ID: SUB154338 1169

