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Abstract: S.P Lo [4] introduced the notion of edge-graceful graphs. Sin-Min Lee, Kuo-Jye Chen and Yung-Chin Wang[6] introduced 

the k-edge-graceful graphs. B. Gayathri, M. Duraisamy and M. Tamilselvi [3] introduced the even edge-graceful graphs. In this paper, 

we introduce definitions of k-even even edge gracefulness, complementary odd-even graceful labeling, complementary edge-odd 

graceful labeling and we also prove that some well known graphs namely, Friendship graph Fm, prism Dn, nm CC  etc., are k-even 

even edge graceful. 
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1. Introduction 
 

Let G be a simple undirected graph with p vertices and q 

edges. Most graph labeling methods trace their origin to one 

introduced by Rosa [8] in 1967, or the one given by Graham 

and Sloane in 1980. S.P. Lo, introduced the notion of edge-

graceful graphs. Sin-Min Lee, Kuo-Jye Chen and Yung-Chin 

Wang introduced the k-edge-graceful graphs. B. Gayathri, 

M. Duraisamy and M.Tamilselvi[3] introduced the even 

edge-graceful graphs. We have introduced a labeling called 

k- even even edge graceful labeling and have also introduced 

complementary odd-even graceful labeling and 

complementary edge-odd graceful labeling. 

 

Definition 1.1: A graph is k-even even edge graceful (k>0) if 

there exists an injective map f: E(G)→ {2k,2k+2,…2k+2q-

2} so that the induced map f 
*
: V(G) →{0, 2,…,(2z-2)} 

defined by f
 
*(x) ≡ Σf(xy) (mod 2z) where z = max {p, q} 

makes all distinct and even. 

 

Definition 1.2: If f is an odd-even graceful labeling of a 

graph G = (V, E) with q edges, then the labeling φ defined 

by φ (v) = (2q+2) - f (v) for all vV(G) is again an odd-

even graceful labeling of G and is called complementary 

odd-even graceful labeling.  

 

Definition 1.3: If f is an edge-odd graceful labeling of a 

graph G = (V, E) with q edges, then the labeling φ defined 

by φ (e) = 2q- f(e) for all e   E(G) is again an edge-odd 

graceful labeling of G and is called complementary edge-odd 

graceful labeling.  
 

A necessary condition: If the (p,q) graph G is k-even even 

edge graceful, then q(q+2k-1)  0 (mod z),where z = max 

{p, q}. 

Remark: 1-even even edge graceful graph is an even even 

edge graceful. 

 

2. Main Results 
 

Definition 2.1: A friendship graph Fm (m 2) is the one 

point union of m cycles of length 3.  

 

Theorem 2.1.1: The Friendship graph Fm is k-even even edge 

graceful if m is odd. 

Proof: Let the vertex set be  mivvV i 21|,  and the 

edge set be  

 
 .)3(mod0|

)3(mod2,121|
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 iandoddisjvve
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Clearly |V| = 2m+1and |E |= 3m. 
 

Define f: E(G) → {2k, 2k+2, …, 2k+2q-2} as follows: 

Case (1): k  0 (mod 3) 

f(e1) = 2k+6m-4, f(e2) = 2k+6m-2, f(e3) = 2k and  

f(ei) = 2k+(2i-6) ; i = 4,5,…,2m. 

Case (2): k  1(mod 3) 

f(e1) = 2k, f(e2) = 2k+2, f(e3) = 2k+4 and f(ei) = 2k+(2i-2) ; i 

= 4,5,…,2m 

Case (3): k  2(mod 3) 

f(e1) = 2k+6m-2, f(e2) = 2k, f(e3) = 2k+2 and f(ei) = 2k+(2i-

4) ; i = 4,5,…,2m. Thus the induced vertex labels are: 

Case (1): k  0 (mod 3) 

f(vi)   4k+6i-10 (mod 6m) i = 3,5,…,2m-1;  

f(vi)   4k+6i-14 (mod 6m) i = 2,4,…,2m & f(v) = 0. 

Case (2): k  1, 2(mod 3) 

f(vi)   4k+6i-2 (mod 6m) i = 3,5,…,2m-1;  

f(vi)   4k+6i-6 (mod 6m) i = 2,4,…,2m and f(v) = 0. 

 
Figure 1: 6–even even edge gracefully labeled Friendship 

graph F5. 

 

Definition 2.2: For n  3, prism Dn is the Cartesian product 

Cn x K2 where Cn is a cycle on n-vertices and k2 is the 

complete graph on 2-vertices. 
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Theorem 2.2.1: Prism Dn is k-even even edge graceful. 

 

Proof: Let G be a Prism graph with 2n vertices and 3n edges. 

Let  nnnn vvvvvv 22,1,21 ,...,,...,,    

be the set of vertices and edges 
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Figure 2 

 

First, we label the edges as follows: 

Define f(ei) = 2k+2i-2 for 1 i 2n. 

Then the induced vertex labels are as follows: 

 Case (1): f(v1) = f(e1)+f(e2)+f(e2n+1) 

 2k + 2 – 2 + 2k + 4 – 2 + 2k + 2(2n+1) - 2 (mod 6n) 

   6k + 2 + 4n (mod 6n)  

Case (2): f(vi) = f(ei)+f(ei+1)+f(e3n-i+2) for 2 i n-1 

2k+2i-2+2k+2(i+1)-2+2k+2(3n-i+2)-2 (mod 6n)  

 2k+2i-2+2k+2i+2-2+2k+6n-2i+4-2 (mod 6n)  

   6k +2i (mod 6n) for 2 i n-1 

Induced vertex labels are {6k +4, 6k +6, …, 6k+2(n-1)}. 

Case (3): f(vn) = f(en)+f(e1)+f(e2n+2) 

 2k+2n-2+2k+2-2+2k+2(2n+2)-2 (mod 6n) 

 2k+2n-2+2k+2k+4n+4-2 (mod 6n) 

 6k (mod 6n) 

Case (4): f(vn+1) = f(en+1)+f(en+2)+f(e2n+1)  

 2k+2n+2-2+2k+2n+4-2+2k+4n+2-2 (mod 6n) 

 2k+2n+2k+2n+2+2k+4n (mod 6n) 

 6k+2n+2 (mod 6n) 

Case (5):  

f(vi) = f(ei)+f(ei+1)+f(e4n-i+2) for n+2 i  2n-1 

 2k+2i-2+2k+2(i+1)-2+2k+2(4n-i+2)-2 (mod 6n)  

 2k+2i-2+2k+2i+2-2+2k+8n-2i+4-2 (mod 6n)  

   6k+2i+2n (mod 6n) for n+2 i  2n-1 

induced vertex labels are {6k+4n +4, 6k+4n +6, …, 6k-2}. 

Case (6): f(v 2n) = f(e2n)+f(en+1)+f(e2n+2) 

 2k+4n-2+2k+2(n+1)-2+2k+2(2n+2)-2 (mod 6n) 

 2k+4n-2+2k+2n+2-2+2k+4n+4-2 (mod 6n) 

 6k+4n (mod 6n) 

Hence induced vertex labels of the graph are 

[{6k+2+4n} {6k+4, 6k +6, …, 6k+2(n-1) 

} {6k} {6k+2n+2 } {6k+4n +4, 6k+4n +6, …, 6k-

2} {6k+4n}](mod 6n). 

Hence Prism Dn is k -even even edge graceful. 

 

 

Illustration: Figure. 3 shows 14 -even even edge graceful 

labeling of Prism D8. 

  

 
Figure 3 

 

Theorem 2.3: The graph nm CC  is k-even even edge 

graceful.  

 

Proof: Let the web graph nm CC   be a graph with mn  

vertices and mn2  edges, where 3)4(mod1  nandm .Let 

the vertices in nm CC   be 

 m
n

mm
nn vvvvvvvvv ,...,,;...;,...,,;,...,, 21
22

2
2
1

11
2

1
1 , where 

i

jv  is 

adjacent to
i

jv 1 , i
nv  is adjacent 

to
iv1 , 11,1  njmi ,which are called latitude cycles ; 

i
jv  is adjacent to 

1i

jv ,
m
jv  is adjacent 

to
1

jv , njmi  1,11 , which are called longitude 

cycles. It is also called 4-regular graph. Let the vertices in 

nm CC   be  m
n

mm
nn eeeeeeeee ,...,,;...;,...,,;,...,, 21
22

2
2
1

11
2

1
1 . 

 

The edge labels of the latitude cycles are  

11,1,621222)( 1  njmijikqvvf i
j

i
j  

and minikqvvf ii
n  1,21222)( 1  The edge labels 

of the longitude cycles are  

njmijikqvvf i
j

i
j  1,11,221222)( 1

 

and .1,622)( 1 njjkvvf j
m
j   Now it remains to 

show that the vertex labels of G are all integers of the 

interval [0,2z]. 
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Illustration: The 7-even even edge graceful labeling is given 

in Figure. 4 

 
Definition 2.3: SF (n,m) is the graph consisting of a cycle Cn 

where n ≥ 3 and n sets of m independent vertices where each 

set joins to each of the vertices on Cn . 

 

Theorem 2.4: The graph S F (n,m) is k-even even edge 

graceful when n is odd, m is even and n divides m. 

 

Proof: Let G be a graph SF(n,m) with 

)1()()(  mnGEGV . let v1,v2,… ,vn be vertices on the 

cycle of S F (n,m) and for each j = 1, 2, . . . , n the vertices 

vj
1
,vj

2
,…,vj

m
 be vertices joining vj . The edge set is the set 
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Define f: E (G) {2, 4, 6,…, 2n(m+1)} by  
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Then the induced vertex labels are as follows: 
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Figure 5: The 14-even even edge graceful labeling of the 

graph SF(5, 10). 

  

Theorem 2.5: If f is an odd-even graceful labeling of a graph 

G = (V, E) with q edges then the labeling φ defined by  

φ (v) = (2q+2) - f (v) for all v   V (G) is again an odd-even 

graceful labeling of G.  

 

Proof: Let G be an odd-even graceful graph with p vertices 

and q edges. 

 

Then, there exists a vertex labeling f of G, f: V(G) → { 1,3, 

…, 2q+1} and the induced function f *: E(G) → { 2,4,…, 

2q} defined by f* (e = uu') = | f (u) - f (u')| ; u, u'V form an 

edge labeling. 

 

Let us consider the following labeling φ of the vertices u of 

the graph G. 

For uG, φ (u) = 2q+2- f (u) 

Thus φ (u)   {2q+1, 2q-1,…,1} 

Further, for each edge e= uv in G, 

 

)()(

)](22[)](22[

)()(*

ufuf

ufqufq

uue





 

  

Therefore the induced edge labels are {2,4,…,2q}. Thus we 

get an odd-even graceful labeling φ of G. 

 

For illustration see the graph G(2,4) in Figure. 6  
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Figure 6: OEGL COEGL 

 

Theorem 2.6: If f is an edge-odd graceful labeling of a graph 

G = (V, E) with q edges then the labeling φ defined by φ (e) 

= 2q-f (e) for all e  E(G) is again an edge-odd graceful 

labeling of G.  

Proof: Consider the graph G (V, E) with |V (G)| = p and |E 

(G)| = q.  

 Then G has a bijective edge labeling f: E (G) → {1,3,…, 

2q-1}. 

Now, define φ (e = uv) = 2q-f (e). 

Then the induced function φ 
* 

(v) = Σ {2q- f (uv) /uvE} 

(mod 2z) 

 = 2q- [Σ f(e) (mod 2z)] form an vertex labeling. 

Thus we get an edge-odd graceful labeling φ of G. 

 

Illustration for edge-odd graceful and complementary edge-

odd graceful graph is given in Figure. 7 

 
edge-odd graceful graph 

 
Complementary edge-odd graceful graph  

 Figure 7 

 

 

 

 

3. Conclusion 
 

In this paper, we have introduced the definitions of k-even 

even edge gracefulness, complementary odd-even graceful 

labeling and complementary edge-odd graceful labeling. We 

have proved that Friendship graph Fm, prism Dn, and 

nm CC   are k-even even edge graceful. Further we have 

proved that the graph S F (n,m) is k-even even edge graceful 

when n is odd, m is even and n divides m.  
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