Constrain Control of Trigonometric Rational Quadratic Spline with Shape Parameters Based on Function Values

Mridula Dube¹, Meenal Priya Singh²

¹Department of Mathematics, R.D. University, Jabalpur, India
²Christ Church School for boys and girls, ISC, Jabalpur, India

Abstract: The aim of this paper presents an analysis of weighted quadratic trigonometric spline with two shape parameters which interpolate on function value. This interpolating is C¹ continuous with quadratic denominator. Constrain control of this rational quadratic trigonometric spline is derived which force it be bound in the given region. Approximation property is discussed.

Keywords: trigonometric spline; shape parameter; interpolation; constrain control; approximation.

1. Introduction

Recently curve designing is playing a very important role. The study of curve and its analysis is very important in the field of CAGD. In electronics importance of trigonometric rational spline is surprising. In CAGD, it is often necessary to generate curves and surfaces that approximate shapes with some desired shape features. Shape parameters are playing a very important role [2,3,4,5] in these applications. In many applications of geometric modeling, it is often to keep the curve bounded in the given region. In this paper constrain for the spline by using the suitable parameter which force it to be in the given region is analyze and derived. Sometimes it is difficult to obtain derivatives to overcome this problem this paper is based on the use of function values only.

The paper is arranged as follows. In Section 2, rational trigonometric quadratic spline is constructed by using shape parameters. In section 3, condition for interpolating curve is bounded between two lines is derived. In section 4, a numerical example with graphical representation is given. Section 5, is about the approximation properties of such trigonometric spline. Conclusion of the paper is discussed in section 6.

2. Trigonometric Spline Interpolation

In this section, the quadratic trigonometric function is defined as, let \(t_0 < t_1 < \ldots < t_n < t_{n+1} \) are the knots \(f_i \) for \(i = 0,1,2,3, \ldots, n, n + 1 \) are the function values defined at the knots. Let \(\vartheta_i = \frac{(s-t_i)}{h_i} \) for \(t \in [t_i, t_{i+1}] \) and let \(\alpha \) and \(\beta \) are positive parameters and \(\alpha \in (0,1) \).

Now consider,

\[
P(t) = \frac{p_i(t)}{q_i(t)} \quad (1)
\]

which satisfying the following interpolation conditions

\[
p_i(t_i) = f_i \quad \text{and} \quad p_i'(t_i) = \Delta_i \quad (2)
\]

for \(i = 0,1,2,3, \ldots, n, n - 1 \)

Thus we have,

\[
A_i = f_i, D_i = f_{i+1}
\]

\[
B_i = f_i + \frac{2h_i \alpha \Delta_i}{\alpha \pi}
\]

and

\[
C_i = f_{i+1} - \frac{2h_i \beta \Delta_{i+1}}{\alpha \pi}
\]

3. Constrained interpolation of rational quadratic trigonometric spline

To get the condition for the rational quadratic function defined in (1) to bounded between lines in the interpolating interval we shall consider the conditions \(t_0 < t_1 < \ldots < t_n < t_{n+1} \) and a data set \((t_i, f_i): i = 0,1, \ldots, n, n + 1\) a straight line \(g(t) \) is defined as \(f_i \geq \langle \langle \langle \leq \rangle \rangle \rangle g(t_i), i = 0,1, \ldots, n, n + 1 \) for all \(t \) of given interval.

Consider two cases:
first for “above” line $P(t) \geq g(t)$ consider subinterval $[t_i, t_{i+1}]$ in which $q_i \geq 0,$

$$P(t) = \frac{p_i(t)}{q_i(t)} \geq g(t)$$
gives,

$$R_i(t) = 0$$

where

$$R_i(t) = p_i(t) - q_i(t)g(t)$$

Then,

$$R_i(t) = \left[\frac{\sin t}{\frac{\pi}{2}} \left[1 + \alpha \sin t \right] \frac{\sin t}{\frac{\pi}{2}} \left[1 + \alpha \sin t \right] \right] + \frac{\beta_i}{(2\pi)^2} \left[1 + \cos t \right] + \frac{\beta_i}{(2\pi)^2} \left[1 + \cos t \right]$$

g_i, g_{i+1} represent $g_i(t), g_{i+1}(t)$ respectively

Where

$$U_i = (1-\theta)(f_i - g_i) + \theta(f_{i+1} - g_{i+1}) - \theta h_i \Delta_i \geq 0$$

$V_i = (1-\theta)(f_i - g_i) + \theta(f_{i+1} - g_{i+1}) - \frac{2h_i}{\alpha} \Delta_i \geq 0$

Theorem 1:

Given, $(t_i, f_i, g_i), i = 0, 1, 2, ..., n + 1$, with $g_i \leq f_i$ and $\alpha, \beta_i > 0$ and $\alpha \in (0, 1]$ the sufficient condition for the interpolation defined by (1) lies above the line $g(t)$ in $[t_i, t_{i+1}]$ is that

$$1 - \theta f_i + \theta f_{i+1} - \theta h_i \Delta_i + h_i \Delta_i \geq 0$$

To find the error estimation we consider that the given in $[t_0, t_{1}]$ and $p(t)$ is the interpolating function of $f(t)$ in $[t_0, t_{1}]$ for $i = 0, 1, ..., n + 1$, consider the case that the knots are equally spaced, namely, $h_i = h = \frac{t_{i+1} - t_i}{n}$ for all $i = 1, 2, ..., n$, using the Peano-Kernel Theorem \[13\] gives the following theorem:

$$U_i = (1-\theta)(f_i - g_i) + \theta(f_{i+1} - g_{i+1}) - \theta h_i \Delta_i \geq 0$$

$$V_i = (1-\theta)(f_i - g_i) + \theta(f_{i+1} - g_{i+1}) - \frac{2h_i}{\alpha} \Delta_i \geq 0$$

Therefore, the sufficient conditions for the interpolation defined by (1) lies below the line $g(t)$ in $[t_i, t_{i+1}]$ is that

$$1 - \theta f_i + \theta f_{i+1} - \frac{2h_i}{\alpha} \Delta_i \geq 0$$

For the equally spaced knots to keep the interpolating curve lies above line see the following corollary:

Corollary 1 For uniform spaced partition, the sufficient condition for the rational quadratic trigonometric curve $P(t)$ defined in (1) lies above the line $g(t)$ when α, β_i positive and $\alpha \in (0, 1]$

$$1 - \theta f_i + \theta f_{i+1} - \alpha \Delta_i \geq 0$$

$$1 - \theta (f_{i+1} - f_i) + \alpha \Delta_i \geq 0$$

Similarly, the sufficient conditions for the rational quadratic trigonometric curve $P(t)$ defined in (1) lies below the line $g(t)$ gives the following theorem:

$$1 - \theta f_i + \theta f_{i+1} - \frac{2h_i}{\alpha} \Delta_i \geq 0$$

4. Approximation Properties of the Weighted Interpolation

To find the error estimation we consider that the given in $f(t) \in C^2$ and $p(t)$ is the interpolating function of $f(t)$ in $[t_i, t_{i+1}]$ for $i = 0, 1, ..., n + 1$, consider the case that the knots are equally spaced, namely, $h_i = h = \frac{t_{i+1} - t_i}{n}$ for all $i = 1, 2, ..., n$, using the Peano-Kernel Theorem \[13\] gives the following

<table>
<thead>
<tr>
<th>t_i</th>
<th>$g^*(t_i)$</th>
<th>$f(t_i)$</th>
<th>$g(t_i)$</th>
<th>α_i</th>
<th>β_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.0011423</td>
<td>0.1</td>
<td>0.001123</td>
<td>0.0011423</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>0.027</td>
<td>0.02</td>
<td>0.013</td>
<td>0.001555</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>0.087</td>
<td>0.08</td>
<td>0.073</td>
<td>0.001510</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>0.047</td>
<td>0.04</td>
<td>0.033</td>
<td>0.0011905</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>0.067</td>
<td>0.06</td>
<td>0.053</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Graph of $g(t), g^*(t), P(t)$ function.
Next, we calculate the following terms in (5)

\[
\begin{align*}
R[F] &= f(t) - p(t) = \int f^2(\tau) R_2 [\{t - \tau\}] \mathrm{d}\tau, t \in [t_i, t_{i+1}], \\
\text{where,} \\
R_2 [\{t - \tau\}] &= \begin{cases}
0, & t < \tau < t_i \\
1, & t_i < \tau < t < t_{i+1} \\
0, & t > t_{i+1}
\end{cases} \\
\end{align*}
\]

We observe that for

\[
p(t) = (t - \tau) + \mathcal{Q}(\tau)
\]

so there exist root

\[
t_2 = t_{i+1} - \frac{K\bar{h}_1}{K - N} (1 - \theta) - \frac{2\beta_i}{K\pi \cos \frac{\pi \theta}{2}} (1 - \cos \frac{\pi \theta}{2}) > 0
\]

there is a root

\[
t_2 = t_{i+1} - \frac{K\bar{h}_1}{K - N} (1 - \theta) - \frac{2\beta_i}{K\pi \cos \frac{\pi \theta}{2}} (1 - \cos \frac{\pi \theta}{2})
\]

Let

\[
L = \frac{2\beta_i}{K\pi} \cos \frac{\pi \theta}{2} (1 - \cos \frac{\pi \theta}{2})
\]

\[
\int_{t_i}^{t_{i+1}} |q(\tau)| \mathrm{d}\tau = \int_{t_i}^{t_{i+1}} q(\tau) \mathrm{d}\tau + \int_{t_i}^{t_{i+1}} |q(\tau)| \mathrm{d}\tau + \int_{t_i}^{t_{i+1}} |q(\tau)| \mathrm{d}\tau + \int_{t_i}^{t_{i+1}} |q(\tau)| \mathrm{d}\tau + \int_{t_i}^{t_{i+1}} |q(\tau)| \mathrm{d}\tau
\]

so there exist root

\[
t_2 = t_{i+1} - \frac{K\bar{h}_1}{K - N} (1 - \theta) - \frac{2\beta_i}{K\pi \cos \frac{\pi \theta}{2}} (1 - \cos \frac{\pi \theta}{2})
\]

from the above calculations it can be shown that

\[
||R[f]|| = \|f(t) - \mathcal{P}(t)\| \leq \|f^{(2)}(t)\| \left[\int_{t_i}^{t_{i+1}} q(\tau) \mathrm{d}\tau + \int_{t_i}^{t_{i+1}} |q(\tau)| \mathrm{d}\tau + \int_{t_i}^{t_{i+1}} |q(\tau)| \mathrm{d}\tau + \int_{t_i}^{t_{i+1}} |q(\tau)| \mathrm{d}\tau + \int_{t_i}^{t_{i+1}} |q(\tau)| \mathrm{d}\tau \right]
\]

5. Conclusion

In this paper, a quadratic rational trigonometric spline was constructed. The conditions was derived for spline function forcefully to be in the given region which is useful in the field of engineering and surface designing.

References

