
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Attacks in HTML5

Kailash L. Methawani
1
, Prof. Avinash P. Wadhe

2

1Student of Master of Engineering in (CSE), G.H. Raisoni College of Engineering and Management, Amravati, India

2Assistant Professor Department of (CSE), G.H. Raisoni College of Engineering and Management, Amravati, India

Abstract: Now days, a web user can enjoy chatting, playing games and Internet banking from simple structured text. The browsers

have changed from being a simple structured display to supporting complex multimedia application. All these applications have

something in common, they can be run on different platforms and in some cases they will run offline. This is possible due to new

features in latest specification HTML, specifically, drawing featured canvas. In this paper, after providing some background to HTML5,

we are going to discuss attack surface and possible threats like CSRF and leveraging CORS to bypass SOP, Attacking WebSQL and

client side SQL injection, ClickJacking & Phishing by mixing layers and iframe, Stealing information from Storage and Global

variables, DOM injections and Hijacking with HTML 5.

Keywords: HTML, HTML5, WebSQL, CSS3

1. Introduction

HTML5 is the latest version of HTML for websites from

the World Wide Web Consortium (W3C). It was first

launched in 2008, but was not actually in used till 2011. In

2011, HTML5 was released, user started using it, but the

support was limited for different browsers. Now a day’s

almost all browsers (Firefox, Opera, Chrome, Safari)

support HTML5, therefore the user can enjoy newest

HTML technology at its best.

HTML5 uses CSS3 as styling sheets and is still in

development. Since its release, HTML5 is continuously

being development with new features; therefore it is

difficult to say that that HTML5’s development will end.

Now days, a web user can enjoy chatting, playing games

and Internet banking from simple structured text. The

browsers have changed from being a simple structured

display to supporting complex multimedia application.

The new markup language was developed based on pre-set

standards:

 The need for external plugins (like Flash) needs to be

reduced.

 New features should be based on HTML, CSS,

JavaScript, Flash, etc.

 Scripting has to be replaced by more markup.

 Error handling should be easier than in previous

versions.

 HTML5 should be device-independent.

2. Literature Survey

HTML known as Hypertext Mark-up Language, Created in

the early 1990s, began as an application of SGML. HTML

was used as standard way to describe the hypertext

documents structure. The term "Hypertext" simply refers

to that the text "contains links to other texts".

HTML: The Early Years

"HTML 1" was defined as a simple, tag-based syntax for

explaining document structure. The earliest version didn’t

even consist of table elements or img. Version1.2 came

with image support. Version2.0 came with slightly change

in HTML grammar. Due to this user could use end tags for

different elements such as p and li, these end tags were

optional. Font element was added in version 3.2. User

could use Java applets and the applet element in version

3.2. The most important feature of version 3.2 was that it

started to support style sheets.

HTML4 came with new features. HTML 4 offered three

options:

 Strict, which only allowed HTML 4 elements

 Transitional allowed for a mix of deprecated HTML 3.2

elements and HTML 4

 Frameset, which allowed multiple documents to be

embedded in one using the frame element

In 1998, W3C stopped working on HTML 4 and replaced

it with XHTML.

XHTML

XHTML 1.0 known as eXtensible Markup Language was

created as "a reformulation of HTML 4 as an XML 1.0

application." XML.

XHTML required end tags for all non-empty elements

such as p and li. Empty elements such as br and img had to

be closed with a />. XHTML, for example, required lower

case tags while HTML allowed upper case tags, lower case

Paper ID: SUB154233 760

http://www.w3.org/TR/xhtml1/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

tags, or a mix of the two. All pages had to be served as

application/xml+xhtml MIME type.

HTML5

HTML5 is a simply set of new features made available for

developing web applications, adding to the existing

capabilities we find in HTML4. It is particularly designed

to improve the language with much better support for

multimedia and server communication, making a web

developer’s job much easier.

HTML5 is not a new version of HTML4 in comparison to

when new software versions are released. It comprises an

entire set of small additions to the existing web standards.

3. Proposed Work

CSRF and leveraging CORS to bypass SOP

Same Origin Policy (SOP) dictates cross domain calls and

allows establishment of cross domain connections. SOP

bypasses allow CSRF attack vector, an attacker can inject

a payload on cross domain page that initiate a request

without consent or knowledge of the target user. HTML 5

is having one more policy in place called CORS (Cross

Origin Resource Sharing). CORS is a “response blind”

technique and controlled by extra added HTTP header

“origin” and their variants but it allows request to hit the

target in one way direction. Hence, it is possible to do one-

way CSRF. It is possible to initiate CSRF vector using

XHR-Level 2 on HTML 5 pages and can prove really

lethal attack vector. XHR establishes a stealth connection

and remains much hidden, XHR connection can be set

using “with Credentials” as true along with POST method.

It allows cookie to replay and helps in crafting successful

CSRF scenario or session riding. Interestingly HTML 5

along with CORS allows performing file upload CSRF as

well. It is possible to craft a JavaScript using XHR and

inject JSON payload as cross domain. If server side code

on JSON library is not validating the “Content-Type” then

it will process the request and allows successful CSRF.

Here is a script which will do CSRF on cross domain.

Here, we have “Content-Type” as “text-plain” and no new

extra header added so CORS will not initiate OPTIONS to

check rules on the server side and directly make POST

request. At the same time we have kept credential to

“true” so cookie will replay.

Above request will cause CSRF and send following on the

wire.

As we can see cookie is replayed and JSON POST has

been initiated. We get following response back from

application.

Application processed the request and sent JSON back. It

is clear case of CSRF.

Attacking WebSQL and client side SQL injection

HTML 5 uses WebSQL as offline databases. If the

application is vulnerable to XSS then an attacker can steal

information from WebSQL and transfer it across domains.

We have seen SQL injections on the server side but this

mechanism can open up client side SQL injections.

Consider the example of shopping portal storing the last 20

transactions on WebSQL being the target of an XSS

attack.

HTML5 has two important data points WebSQL and

Storage. They are controlled by well defined RFCs and

specifications. These can be accessed by using JavaScript.

Assume, we get an entry into DOM then also we are

unaware with WebSQL table names and storage keys. It

can be enumerated that data during pen-testing and

assessments.

Paper ID: SUB154233 761

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

We need following information to extract target content

for Blind SQL enumeration.

1. Table structure created on SQLite

2. Database object

3. User table on which we need to run select query

The script is given below.

var db_tbl;

var db_obj;

var db_tbl1;

for(a in window){

obj = window[a];

try{

if(obj.constructor.name=="Database"){

db_obj = obj;

obj.transaction(function(tx){

tx.executeSql('SELECT name FROM sqlite_master

WHERE

type=\'table\'',[],function(tx,results){

table=results;

},null);

});

}

}catch(ex){}

}

if(table.rows.length>1)

db_tbl1=table.rows.item(1).name;

a) User will run through all objects and get object where

constructor is “Database”

b) He will make Select query directly to sqlite_master

database

c) He will grab 1st table leaving webkit table on 0th entry.

In this way, he will get the actual table name residing on

WebSQL for this application, next he can run SQL query

and loop through results.

He will get the name of the table and now we can use same

database object to run the query through script.

ClickJacking & Phishing by mixing layers and iframe

Click-jacking refers to the process of “stealing” clicks on

your site, redirecting it to other places, either by using an

XSS Vector to replace the targets of links (or whole

sections of the page) or by putting your page in an iframe

and placing the attacker’s content over yours.

In daily life, we may visit a website, where click on event

is iframed like “click here to win prizes”, “Click here to

kill viruses”. This I nothing but the process of redirecting

to other places.

Stealing information from Storage and Global

variables

HTML5 uses LocalStorage, wherein a developer can

create LocalStorage for the application and can store some

information. This storage can be accessed from anywhere

in the application. This feature of HTML 5 offers great

flexibility on the client side. LocalStorage can be accessed

through JavaScript.

DOM injections and Hijacking with HTML 5

Browser specifications are changed in three dimensions –

HTML 5, DOM-Level 3 and XHR-Level2; each tightly

integrated with the other. It is not possible to separate them

while coding an application. HTML 5 applications use

DOM extensively and dynamically change content via

XHR calls. DOM manipulation is done by several different

DOM-based calls and poor implementation allows DOM-

based injections. These injections can lead to a set of

possible attacks and exploits like DOM-based XSS,

content extraction from DOM, variable manipulation,

logical bypasses, information enumeration, etc. At the

same time DOM loads different objects like Flash and

Silverlight, making for interesting attack points. It is

possible to hijack the entire DOM along with these objects

and craft several different attack vectors as part of cross

domain mechanism. DOM injections can allow add-on

hacking and other browser-related hacks.

Paper ID: SUB154233 762

