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Abstract: In this paper, the new iterative method with a reliable algorithm is applied to the systems of Volterra integro-differential
equations. The method is useful for both linear and nonlinear equations. By using this method, the solutions are obtained in series form.
Two linear and one nonlinear system of the equations are given to verify the reliability and efficiency of the method. Beside this, the
comparison of the exact solution with the approximated solution by the method is illustrated by the graphs.
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1. Introduction

Integro-differential equations have found applications in
engineering, physics, chemistry, biology and insurance
mathematics [1-3]. Several techniques including Chebyshev
polynomial method [4], hybrid Legendre functions [5], the
Taylor  collocation method [6], the differential
transformation method [7] , the variational iteration method
[8] , the Beseel collocation method [9], [10] the homotopy
perturbation method [11], [12] and Taylor series method
[13] have been used to investigate integro-differential
equations.

In recent review article, Khan [14] have obtained the
solutions of the systems of third order nonlinear integro-
differential equations by Variational iteration algorithm-II
method. Yuzbasi and Isnailov [15] applied the differential
transformation method to system of Volterra integro-
differential equations with propositional delay. Recently,
Daftardar-Gejji and Jafari [16] proposed a reliable method
for solution of functional equations called the new iterative
method. Hemeda [17] implements the new iterative method
to nth order linear and nonlinear integro-differential
equations. The elegance of the new iterative method can be
attributed to its simplistic approach in finding the semi-
analytical solution of the system of nonlinear integro-
differential equation of the form:
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In systems (1), m iz order of denvatives and the continuous
zeveral varables functions and ff and K; . i=123,....n
are given, the solutions to be determined arey;(x), i =
1.2.3...n

2. Basic Idea of New lterative Method

To describe the idea of the new iterative method (NIM), we
consider the following general formulation by Dafatardar-
Gejji and Jafari (2006). Consider the nonlinear functional

equation:

N(y() )
where N is a nonlinear operator from a Banach space
E — Eand is a known function. We are looking for a

solution ¥ () of (2} of having the series form:

y(&) = Eioy; 3)
The nonlinear operator  can be decomposed as follows:
N(Efow) = Niyp) + ZE. N (T y;) - N(Eizhy))

(4)
From Eg. (3) and (4), Eqg. (2) is equivalent to
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we define the recurrence relation:
Yo = f(x)
n= N':J’n]

¥2 = Ny + ) — Niy)
} (6)

Ym+r =N + 9 + 4 W)
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Yo+ ¥+ 4 Vmer = NOp 3+ +ypdm=12,...
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y(x) = &) +I,w (8)
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If |\ is a contraction, i.e.

ING) — Nl < kllx—yll.0 <k <1,
Then,
v o ll = UN Gy + 9y + -+ 33
—NQp + 3+ + Y-l
Zkllyll £ = &Myl m =0.1.2,...,
and the series 2..2 5y absolutely and unifommly converges to
solution of Eq. (1) [18], which is unique, in view of Banach

fixed point theorem[19]. The k-term approximate solution
of Eq. (2)and (3)is given by 2725 v

3. New Iterative Method for the System

For simplicity, let us rewrite the system of nonlinear
Volterra integral equations in Eq. (1) above in vector form
as:

[ md ( (md
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e
where
F&) =[0G, £G). . £,
1Ir|i'r._ (x) = [ li'r._J :liﬂ'.:l““J ’;;WJ]T:
K= [K,. K, ... K,]

In view of the new iterative method, the system of Volterra
integro-differential equation in Eq. (9) is equivalent to the
system of integral equation:
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where the zero solution yglx) is the solution of the system
of nth-order integro-differential equation and
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Therefore,

NG =12 (kG Oy@ @y™ @) dt)  (13)
where I7 iz an nth-order ntegral operator with respect tox,
In vector notation, the new iterative alzonthm for (137 1s:
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4. Ilustrative Examples

Example 1.
Consider the system of first-order linear Volterra integro-
differential equation:
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Oy () dt (14)
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£y, (£)) dt

with the initial conditions:

¥, (0) = 0, %,(0) = 0and

thy; () — (x -

2 (0) = 0,3, (0) =0
The system of the integro-differential equation (14) is
equivalent to the system of integral equation:
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Let
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we obtain easily the following first few components of the

new iterative method solution.

The first five terms are:
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and so on, in the same manner, the rest components can be
obtained. The sum of the first five terms is:

¥y, () =x+%x:— : x*®

16153 4B7 36000

v, (x) _x_% r_ 0 a7

4445 0928512000

It iz obvious that the iterations converge to the exact
ywx) =x +%x: and v, (x) = x —%x: as the
number of iterations becomes large. )

In Figure 1, we have plotted v, (x) = %2 _ v, ()and
¥ () = 230 Yo (x).

solutions

Example 2

Consider the system of second-order linear

differential equations

¥ (@) = —x+ 2%+ [T (3,00 + 43 @) dt,

() =2+ x% — 2% [ (49 - 29, (D) dr. 15)
yalx) = 6x —x* + 2% + f;{E}FL(t] — 3y, (8) dt

with the initia! conditions:
v, (0) = 0, v, (0) = 1.

integro-

¥, (0) = 0, %, (0) = 0.

¥ (0) = 0,300 =0.

The system of integro-differential equation is equivalent to
the system of integral equation:
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we obtain the first few components of the new iterative

method solution.
The first four terms are:
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and so on, in the same manner, the rest components can be
obtained.
The sum of the first four terms is:

L 14 L 15 i 13
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Example 3

Consider the system of nonlinear third-order Volterra
integro-differential equation:

}L{x:] = —2x —2x° —g_rs + f:{)’lz{t:] +_‘J-"::':£]}dt:
(16)
w6 = —Ixt - —1x® + [ - D00 °® —3,°®) at,

with the initial conditions:
}31':[]:] = 1: }‘jl_li[:l:] = 1}-;:{0:] =72

y2(0) =1, —,(0) = 1,5,(0) = 2

As the above examples, from (3.16), we obtain:

The system of integro-differential equation is equivalent to
the system of integral equation:
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Figure 1: Exact and approximate solutions for (@) ¥1 () ang
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the approximate and exact solutions respectively.
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ﬁ// . Figure 2: Exact and approximate solution for (3} y, (x), (b)
' R i ' v, (x) and (c) v (x) of Eq (4.3), where red and blue
- = . . .
o represent the approximate and exact solutions respectively.
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Figure 3: Exact and approximate solutions for (a) 3, (x) and
(b) v, (x} for Eq. (16), where the red and blue represent the

approximate and exact solution respectively.
5. Conclusion

In this paper, we successfully applied the new iterative
method to find the solution of system of the nth-order linear
and nonlinear Volterra integro-differential equations. The
present method converts a system of Volterra integro-
differential equation to a system of Volterra integral
equation. It is clear from the graphs that the solutions agree
well with the exact solutions for these equations. The results
showed that the method is very accurate and simple.
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