Approximation of Systems of Volterra Integro-Differential Equations Using the New Iterative Method

Hassan IBRAHIM1, Peter Vanechii AYOO2

1, 2 Department of Mathematics, Federal University Lafia, PMB 146 Lafia, Nigeria

Abstract: In this paper, the new iterative method with a reliable algorithm is applied to the systems of Volterra integro-differential equations. The method is useful for both linear and nonlinear equations. By using this method, the solutions are obtained in series form. Two linear and one nonlinear system of the equations are given to verify the reliability and efficiency of the method. Beside this, the comparison of the exact solution with the approximated solution by the method is illustrated by the graphs.

Keywords: New Iterative Method, System of Volterra Integro-Differential Equations, Exact solutions.

1. Introduction

Integro-differential equations have found applications in engineering, physics, chemistry, biology and insurance mathematics [1-3]. Several techniques including Chebyshev polynomial method [4], hybrid Legendre functions [5], the Taylor collocation method [6], the differential transformation method [7], the variational iteration method [8], the Bessel collocation method [9], [10] and the homotopy perturbation method [11], [12] have been used to investigate integro-differential equations.

In recent review article, Khan [14] have obtained the solutions of the systems of third order nonlinear integro-differential equations by Variational iteration algorithm-II method. Yuzbasi and Ismailov [15] applied the differential transformation method to system of Volterra integro-differential equations with propositional delay. Recently, Daftardar-Gejji and Jafari [16] proposed a reliable method for solution of functional equations called the new iterative method. Hemeda [17] implements the new iterative method to nth order linear and nonlinear integro-differential equations. The elegance of the new iterative method can be attributed to its simplistic approach in finding the semi-analytical solution of the system of nonlinear integro-differential equation of the form:

\[\begin{align*}
\frac{d^n}{dt^n}y(t) &= f(t, y(t), y'(t), \ldots, y^{(n-1)}(t)) \\
&+ \int_0^t K_n(t, s, y(s), y'(s), \ldots, y^{(n-1)}(s)) \, ds
\end{align*} \]

In systems (1), \(m \) is order of derivatives and the continuous several variables functions and \(f_i \) and \(K'_i \), \(i = 1, 2, 3, \ldots, n \) are given, the solutions to be determined are \(y_i(t), i = 1, 2, 3, \ldots, n \)

2. Basic Idea of New Iterative Method

To describe the idea of the new iterative method (NIM), we consider the following general formulation by Daftardar-Gejji and Jafari (2006). Consider the nonlinear functional equation:

\[N(y(x)) \]

where \(N \) is a nonlinear operator from a Banach space \(B \rightarrow B \) and is a known function. We are looking for a solution \(y(x) \) of (2) using the iterative method:

\[y(x) = \sum_{i=0}^{\infty} y_i \]

From Eq. (3) and (4), Eq. (2) is equivalent to

\[N(\sum_{i=0}^{\infty} y_i) = f(x) + N(y_0) + \sum_{i=1}^{\infty} [N(\sum_{j=0}^{i-1} y_j) - N(\sum_{j=0}^{i-1} y_j)] \]

we define the recurrence relation:

\[y_0 = f(x) \]

\[y_1 = N(y_0) \]

\[y_2 = N(y_0 + y_1) - N(y_0) \]

\[\cdots \]

\[y_{m+1} = N(y_0 + y_1 + \cdots + y_m) - N(y_0 + y_1 + \cdots + y_m) \]

\[y_m + y_1 + \cdots + y_{m-1} = N(y_0 + y_1 + \cdots + y_m), m = 1, 2, \ldots \]

\[y(x) = f(x) + \sum_{i=0}^{\infty} y_i \]
If \(N \) is a contraction, i.e.
\[
\|N(x) - N(y)\| \leq k \|x - y\|, \quad 0 < k < 1.
\]
Then,
\[
\|y_{m+1}\| \leq \|N(y_0 + y_1 + \ldots + y_m) - N(y_0 + y_1 + \ldots + y_{m-1})\| \\ \leq k \|y_m\| \leq \ldots \leq k^m \|y_0\|, \quad m = 0, 1, 2, \ldots,
\]
and the series \(\sum_{j=0}^{\infty} y_j \) absolutely and uniformly converges to solution of Eq. (1) \cite{18}, which is unique, in view of Banach fixed point theorem \cite{19}. The \(k \)-term approximate solution of Eq. (2) and (3) is given by \(\sum_{j=0}^{k} y_j \).

3. New Iterative Method for the System

For simplicity, let us rewrite the system of nonlinear Volterra integral equations in Eq. (1) above in vector form as:
\[
y^{(m)}(x) = f(x) + \int_{x_0}^{x} \left(K(x,t) y_1^{(m)}(t), y_2^{(m)}(t), \ldots, y_n^{(m)}(t) \right) dt
\]
where
\[
f(x) = [f_1(x), f_2(x), \ldots, f_n(x)]^T,
\]
\[
y^{(m)}(x) = [y_1^{(m)}(x), y_2^{(m)}(x), \ldots, y_n^{(m)}(x)]^T,
\]
\[
K = [K_1, K_2, \ldots, K_n]^T
\]
In view of the new iterative method, the system of Volterra integro-differential equation in Eq. (9) is equivalent to the system of integral equation:
\[
y(x) = x + I_x^y \left(\int_{x_0}^{x} \left(K(x,t) y_1^{(m)}(t), y_2^{(m)}(t), \ldots, y_n^{(m)}(t) \right) dt \right)
\]
where
\[
K = [K_1, K_2, \ldots, K_n]^T
\]
Therefore,
\[
N(y) = I_x^y \left(\int_{x_0}^{x} \left(K(x,t) y_1^{(m)}(t), y_2^{(m)}(t), \ldots, y_n^{(m)}(t) \right) dt \right)
\]
where \(I_x^y \) is an nth-order integral operator with respect to \(x \).

4. Illustrative Examples

Example 1.
Consider the system of first-order linear Volterra integro-differential equation:
\[
y_1(x) = 1 + x - \frac{1}{2} x^2 + \int_{x_0}^{x} (x - t) y_2(t) \frac{d\tau}{\int_{x_0}^{\tau} y_1(\tau) d\tau} \frac{d\tau}{\int_{x_0}^{\tau} y_2(\tau) d\tau} + (x - t) y_2(t) dt
\]
with the initial conditions:
\[
y_1(0) = 0, \quad y_2(0) = 0
\]
The system of the integro-differential equation (14) is equivalent to the system of integral equation:
\[
y_1(x) = x + \frac{1}{2} x^2 - \frac{1}{12} x^4 + \int_{x_0}^{x} (x - t) y_1(t) \frac{d\tau}{\int_{x_0}^{\tau} y_1(\tau) d\tau} \frac{d\tau}{\int_{x_0}^{\tau} y_2(\tau) d\tau} + (x - t) y_2(t) dt
\]
\[
y_2(x) = x - \frac{1}{2} x^2 - \frac{1}{50} x^5 + \int_{x_0}^{x} (x - t) y_1(t) \frac{d\tau}{\int_{x_0}^{\tau} y_1(\tau) d\tau} \frac{d\tau}{\int_{x_0}^{\tau} y_2(\tau) d\tau} + (x - t) y_2(t) dt
\]
Let
\[
N_1(y) = I_x^y \left(\int_{x_0}^{x} (x - t) y_1(t) + (x - t) y_2(t) dt \right)
\]
\[
N_2(y) = I_x^y \left(\int_{x_0}^{x} (x - t) y_1(t) - (x - t) y_2(t) dt \right)
\]
we obtain easily the following first few components of the new iterative method solution.
The first five terms are:
\[
y_1(x) = x + \frac{1}{2} x^2 - \frac{1}{12} x^4
\]
\[
y_2(x) = x - \frac{1}{2} x^2 - \frac{1}{50} x^5
\]
\[
y_1(x) = x + \frac{1}{2} x^2 - \frac{1}{12} x^4 + \int_{x_0}^{x} (x - t) y_1(t) \frac{d\tau}{\int_{x_0}^{\tau} y_1(\tau) d\tau} \frac{d\tau}{\int_{x_0}^{\tau} y_2(\tau) d\tau} + (x - t) y_2(t) dt
\]
\[
y_2(x) = x - \frac{1}{2} x^2 - \frac{1}{50} x^5 + \int_{x_0}^{x} (x - t) y_1(t) \frac{d\tau}{\int_{x_0}^{\tau} y_1(\tau) d\tau} \frac{d\tau}{\int_{x_0}^{\tau} y_2(\tau) d\tau} + (x - t) y_2(t) dt
\]
Example 2

Consider the system of second-order linear integro-differential equations
\[y_1(x) = -x^2 + x^4 + \int_0^x (2y_2(t) + 4y_3(t)) \, dt, \]
\[y_2(x) = 2 + x^2 - x^4 + \int_0^x (4y_3(t) - 2y_1(t)) \, dt, \]
with the initial conditions:
\[y_1(0) = 0, \quad y_2(0) = 0. \]

The system of integro-differential equation is equivalent to the system of integral equation:
\[y_{10}(x) = -\frac{x}{20} x^8 - \frac{1}{20} x^6 + \int_0^x (3y_2(t) + 4y_3(t)) \, dt, \]
\[y_{10}(x) = x^2 + \frac{1}{2} x^4 - \frac{1}{20} x^6 + \int_0^x (4y_3(t) - 2y_1(t)) \, dt, \]
\[y_{10}(x) = x^2 - \frac{1}{12} x^4 + \frac{1}{10} x^5 + \int_0^x (2y_2(t) - 3y_3(t)) \, dt. \]

Let
\[N_1(y) = I_p \int_0^x (3y_2(t) + 4y_3(t)) \, dt, \]
\[N_2(y) = I_p \int_0^x (4y_3(t) - 2y_1(t)) \, dt \]
and
\[N_3(y) = I_p \int_0^x (2y_2(t) - 3y_3(t)) \, dt \]
we obtain the first few components of the new iterative method solution.

The first four terms are:
\[y_1(x) = -\frac{x}{20} x^5 - \frac{1}{20} x^6, \]
\[y_1(x) = x^2 + \frac{1}{12} x^4 - \frac{1}{20} x^6, \]
\[y_1(x) = x^3 - \frac{1}{2} x^4 + \frac{1}{20} x^6, \]
\[y_1(x) = \frac{1}{10} x^5 - \frac{1}{20} x^6 + \frac{1}{6} x^7 + \frac{1}{10} x^8. \]

Example 3

Consider the system of nonlinear third-order Volterra integro-differential equation:
\[y_1''(x) = -2x - 2x^3 - \frac{5}{2} x^5 + \int_0^x (y_2^2(t) + y_2^2(t)) \, dt, \]
\[y_2''(x) = -\frac{2}{7} x^5 - \frac{1}{6} x^7 + \int_0^x (y_1^2(t) - y_2^2(t)) \, dt, \]
with the initial conditions:
\[y_1(0) = 1, \quad y_2(0) = 1. \]

As the above examples, from (3.16), we obtain:

The system of integro-differential equation is equivalent to the system of integral equation:

Volume 4 Issue 5, May 2015

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY
Let and so on, in the same manner, the rest components can be obtained. The sum of the first three terms is:

\[
y_1(x) = 1 + x + x^2 - \frac{1}{12} x^4 - \frac{1}{60} x^6 - \frac{1}{840} x^8 + I_2^2 \left[\int_0^t (y_2(t) + y_2(t) + y_2(t)) \, dt \right]
\]

\[
y_2(x) = 1 - x + x^2 - \frac{1}{180} x^6 - \frac{1}{1080} x^8
\]

\[+ I_2^2 \left[\int_0^t (x - t) (y_2(t) + y_2(t)) \, dt \right]
\]

Let \(N_1(y) = I_2^2 \left[\int_0^t (y_1(t) + y_2(t)) \, dt \right], \)

\[N_2(y) = I_2^2 \left[\int_0^t (x - t) (y_1(t) + y_2(t)) \, dt \right]
\]

\[
y_1(x) = 1 + x + x^2 - \frac{1}{12} x^4 - \frac{1}{60} x^6 - \frac{1}{840} x^8
\]

\[
y_2(x) = 1 - x + x^2 - \frac{1}{180} x^6 - \frac{1}{1080} x^8
\]

\[
y_3(x) = I_2^2 \left[\int_0^t (y_1(t) + y_2(t)) \, dt \right]
\]

\[= \frac{1}{12} x^4 + \frac{1}{12} \frac{25729}{6677} x^4 + \frac{1}{1566} \frac{20404005}{1566} x^6 + \frac{1}{1566} \frac{2484000005}{1566} x^8 + \cdots
\]

\[
y_4(x) = I_2^2 \left[\int_0^t (x - t) (y_1(t) + y_2(t)) \, dt \right]
\]

\[= \frac{1}{12} x^4 + \frac{1}{12} \frac{25729}{6677} x^4 + \frac{1}{1566} \frac{20404005}{1566} x^6 + \frac{1}{1566} \frac{2484000005}{1566} x^8 + \cdots
\]

and so on, in the same manner, the rest components can be obtained.

The sum of the first three terms is:

\[
y_1(x) = 1 + x + x^2 - \frac{21601}{1596591} x^{22} + \cdots
\]

\[
y_2(x) = 1 - x + x^2 + \frac{17564179}{17564179} x^{21} + \cdots
\]

Figure 1: Exact and approximate solutions for (a) \(y_1(x) \) and (b) \(y_2(x) \) of Eq. (14), where the red and the blue represent the approximate and exact solutions respectively.

Figure 2: Exact and approximate solution for (a) \(y_1(x) \), (b) \(y_2(x) \) and (c) \(y_3(x) \) of Eq. (4.5), where red and blue represent the approximate and exact solutions respectively.
In this paper, we successfully applied the new iterative method to find the solution of system of the nth-order linear and nonlinear Volterra integro-differential equations. The present method converts a system of Volterra integro-differential equation to a system of Volterra integral equation. It is clear from the graphs that the solutions agree well with the exact solutions for these equations. The results showed that the method is very accurate and simple.

5. Conclusion

In this paper, we successfully applied the new iterative method to find the solution of system of the nth-order linear and nonlinear Volterra integro-differential equations. The present method converts a system of Volterra integro-differential equation to a system of Volterra integral equation. It is clear from the graphs that the solutions agree well with the exact solutions for these equations. The results showed that the method is very accurate and simple.

References

Figure 3: Exact and approximate solutions for (a) \(y_1(x) \) and (b) \(y_2(x) \) for Eq (16), where the red and blue represent the approximate and exact solution respectively.

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY