
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Reconfigurable FPGA Implementation of FIR Filter

using Modified DA Method

M. Backia Lakshmi
1
, D. Sellathambi

2

1PG Student, Department of Electronics and Communication Engineering, Parisutham Institute of Technology and Science, Thanjavur,

Tamil Nadu, India

2Assistant Professor, Department of Electronics and Communication Engineering, Parisutham Institute of Technology and Science,

Thanjavur, Tamil Nadu, India

Abstract: In signal processing, a digital filter is a system that performs mathematical operations on a sampled, discrete-time signal to

reduce/enhance certain aspects of that signal. A digital filter usually contains of an ADC to sample the input signal, it is continued by a

microprocessor and the peripheral components such as memory to store data and filter coefficients etc. In some of the high performance

applications, instead of using a general purpose microprocessor, FPGA or ASIC can be used for expediting operations such as filtering.

One type of digital filter is FIR filter which is stable and gives linear phase response. For an Nth order FIR filter, the generation of each

output sample takes N+1 MAC operations. Memory based structures are well-suited for many DSP algorithms, which includes

multiplication with a set of coefficients which remains fixed. For this purpose, Distributed Arithmetic architecture is used in FIR filter.

Distributed arithmetic is one way to implement convolution without the multiplier unit, where the MAC operations can be replaced by a

series of LUT access and summations. LUT are the kind of logic that used in DRAM based FPGAs. It is mainly used in the applications

like Software Defined Radio (SDR), Digital up/down converters, Multi-Channel filters where the coefficients are changed during the

run time. Hence LUT’s are needed to be reconfigurable. This project achieves high-throughput by implementing the reconfigurable FIR

filter using modified Distributed Arithmetic (DA) based approaches. For this implementation of reconfigurable FIR filter RAM based

LUT’s are used, and the implementation of such LUT’s remains costlier. Thus a shared LUT design is proposed for reconfigurable FIR

filter. Requirement of separate registers are eliminated by sharing the registers for different bit slices. Thus the DRAM based FIR filter

reduces the number of bit slices. The proposed design is implemented in Xilinx Virtex-5 FPGA device (XC5VSX95T-1FF1136).

Keywords: Modified Distributed Arithmetic (DA), Finite Impulse Response (FIR) Filter, Reconfigurable Implementation, Field

Programmable Gate Array (FPGA), Look Up Table (LUT).

1. Introduction

Digital filters are typically used to modify or alter the

attributes of a signal in the time or frequency domain. It

performs mathematical operations on a sampled or discrete

time signal to reduce or enhance certain aspects of that

signal. The most common digital filter is the linear time-

invariant (LTI) filter. An LTI interacts with its input signal

through a process called linear convolution. LTI digital

filters are generally classified as being finite impulse

response (i.e., FIR), or infinite impulse response (i.e., IIR).

As the name implies, an FIR filter consists of a finite

number of sample values, reducing the above convolution

sum to a finite sum per output sample instant. An IIR filter,

however, requires that an infinite sum be performed.

The motivation for studying digital filters is found in their

growing popularity as a primary DSP operation. Digital

filters are rapidly replacing classic analog filters, which were

implemented using RLC components and operational

amplifiers. Analog filters were mathematically modeled

using ordinary differential equations of Laplace transforms.

They were analyzed in the time or s (also known as Laplace)

domain. Analog prototypes are now only used in IIR design,

while FIR are typically designed using direct computer

specifications and algorithms [1]. An FIR with constant

coefficients is an LTI digital filter. It is a stable filter. It

gives linear phase response. It can be seen to consist of a

collection of a “tapped delay line,” adders, and multipliers.

One of the operands presented to each multiplier is an FIR

coefficient, often referred to as a “tap weight” for obvious

reasons. Historically, the FIR filter is also known by the

name “transversal filter,” suggesting its “tapped delay line”

structure. A perfectly linear-phase filter has a group delay

that is constant over a range of frequencies. The symmetry

properties intrinsic to a linear-phase FIR can also be used to

reduce the necessary number of multipliers L. Recently, with

the advent of software defined radio (SDR) technology,

finite impulse response (FIR) filter research has been

focused on reconfigurable realizations.

Distributed arithmetic is one way to implement convolution

with multiplier less unit, where the MAC operations are

replaced by a series of LUT access and summations.

Distributed Arithmetic is a different approach for

implementing digital filters [3]. The basic idea is to replace

all multiplications and additions by a table and a shifter-

accumulator. Basically each look up table is a bunch of

single bit memory cells storing individual bit values in each

of the cells. Distributed Arithmetic provides cost-effective

and area-time efficient computing structures. The DA

implementation of an FIR filter is particularly attractive for

low-order cases due to LUT address space limitations. The

outputs of a collection of low-order filters can be added

together to define the output of a high-order FIR. To

accelerate a DA filter, unrolled loops can be used. The input

is applied sample by sample (one word at a time), in a bit-

parallel form. In this case, for each bit of input a separate

table is required. While the table size varies (input bit width

equals number of filter taps), the contents of the tables are

the same.

Paper ID: SUB154058 450

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The DA implementation in ROM based LUT has fixed

coefficients. Hence the LUT is fixed i.e. coefficients cannot

be changed. The fixed LUT’s require more memory space

and delay. Thus the complexity of the system increases. To

overcome this problem Modified DA method is

implemented in RAM based LUT. Modified DA architecture

is used to obtain an area time-power-efficient

implementation of FIR filter in FPGA [2]. FIR filter

coefficients can be changed dynamically in RAM based

LUT. In this proposed method LUT’s are shared by DA

units which results in less memory space and delay.

2. DA Based Implementation of FIR filter

The distributed arithmetic is a method of computing the sum

of products:

where, c[n]  coefficients; x[n]  variables.

In the existing approach, the ROM based LUT’s are fixed.

The LUT’s which are fixed in the sense the coefficients

stored in the LUT’s cannot be changed during run time. The

same coefficients are used for the full operation of FIR

Filters.

It is useful to implement in the case of adder operations in

which the multiply and Accumulate (MAC) operation is

performed in addition to the multipliers. Hence it increases

the cost of the process as well as the memory. So it increases

the number of bit slices.

The FIR filter coefficients are dynamically changed during

run time. The conventional DA implementation used for the

implementation of an FIR filter assumes that impulse

response coefficients are fixed, and this behavior makes it

possible to use ROM-based LUTs. The memory requirement

for DA-based implementation of FIR filters, however,

exponentially increases with the filter order. Modified DA

architecture is used to obtain an area time-power-efficient

implementation of FIR filter in FPGA [5]. The mapping

function is presented as a lookup table (DA-LUT) that

includes all the possible linear combinations of the

coefficients and the bits of the incoming data samples. In a

modification of distributed arithmetic concept was proposed

that allows decomposing DA-LUT into LUTs of sizes

available in given FPGA architecture. For higher order

filters, the size of the LUT also increases exponentially with

the order of the filter. For a filter with N coefficients, the

LUT have 2
N
 values. This in turn reduces the performance

[6].

Therefore, for higher order filters, LUT size to be reduced to

reasonable levels. To reduce the size, the LUT can be

subdivided into a number of LUTs, called LUT partitions.

Each LUT partition operates on a different set of filter taps.

The results obtained from the partitions are summed.

Suppose the length LK inner product, then equation,





LK

k

kk XAy
1

 (2.2)

Then the sum can be partitioned into L independent K
th

parallel DA LUTs resulting in,

 









1

0

1

0

][
L

I

N

n

nLILI AXy
 (2.3)

For 3rd order filter

 Number of partition = 2

 2 LUT tables are used. Each has 2 inputs.

 Memory location = no .of partition * 2
n
 = 2*2

2
 =8

location.

 n=number of inputs of LUT

A Reconfigurable FIR filter whose filter coefficients

dynamically change during runtime plays an important role

in the software defined radio systems, multichannel filters,

and digital up/down converters [4].

3. Proposed Approach

Figure 1: Overview diagram of proposed method

The number of sections depends upon the input bit width

shows in figure 1. In figure 2 shows that the functional block

diagram of proposed method.

Figure 2: Functional block diagram

3.1 Shift Register

In digital circuits, a shift register is a cascade of flip flops

which shares the same clock. The output of each flip flop is

connected to the “data” input of the next flip flop in the

Paper ID: SUB154058 451

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

chain. The resulting circuit shifts by one position the “bit

array” stored in it, shifting in the data. More generally, a

shift register may be multidimensional, such that it’s "data

in" and stage outputs are themselves bit arrays: this is

implemented simply by running several shift registers of the

same bit-length in parallel.

Shift registers can have both parallel and serial inputs and

outputs. These are often configured as 'serial-in, parallel-out'

(SIPO) or as 'parallel-in, serial-out' (PISO). There are also

types that have both serial and parallel input and types with

serial and parallel output. There are also 'bidirectional' shift

registers which allow shifting in both directions: Left to

Right or Right to Left. The serial input and last output of a

shift register can also be connected to create a 'circular shift

register'.

3.2 Word shift register

In digital circuits, a shift register is a cascade of flip flops,

sharing the same clocks, in which the output of each flip flop

is connected to the “data” input of the next flip flop in the

chain. It results in a circuit that shifts by one position the

“bit array” in it. Here the input and filter coefficients are

given separately in a serial bit by bit fashion.

A shift register basically consists of several single bit “D-

Type Data Latches”, one for each data bit, either a logic “0”

or a “1”. In which they are connected together in a serial

type daisy-chain arrangement so that the output from one

data latch becomes the input of the next latch and so on.

Data bits may be fed in or out of a shift register serially, that

is one after the other from either the left or the right

direction, or all together at the same time in a parallel

configuration. The number of individual data latches

required to make up a single Shift Register device is usually

determined by the number of bits to be stored with the most

common being 8-bits (one byte) wide constructed from eight

individual data latches. In figure 3 shows MAC architecture

using modified DA.

Shift Registers are used for data storage or for the movement

of data and are therefore commonly used inside calculators

or computers to store data such as two binary numbers

before they are added together, or to convert the data from

either a serial to parallel or parallel to serial format. The

individual data latches that make up a single shift register

are all driven by a common clock (Clk) signal making them

synchronous devices. Shift register IC’s are generally

provided with a clear or reset connection so that they can be

“SET” or “RESET” as required.

3.3 Multiplier

The high speed multiplication operation plays vital part in

Digital Signal Processor (DSPs) as well as in general

processor. Finite Impulse Response (FIR) filter with higher

speed is of great importance. FIR filter is also called

convolution filter since convolution is the fundamental

concept of designing FIR filter. In Digital signal processing,

the multiply-accumulate operation is a common step that

computes the product of two numbers and adds the product

to an accumulator. The hardware unit which performs this

operation is known as Multiplier-Accumulate unit or MAC

unit.

3.4 Accumulator

Accumulator is a register which is used to hold the output of

the ALU or Multiplier-Accumulate unit. DSP processors

typically have from one to four accumulators. Several low-

power design techniques have been applied to the design of

a power efficient multiplier-accumulator (MAC) array. The

MAC array is designed to have a programmable resolution

so that the blocks corresponding to the least significant bits

can be deactivated when a lower resolution is sufficient. A

MAC unit consists of a multiplier and accumulator. MAC

unit is an inevitable component in many digital signal

processing (DSP) applications involving multiplications

and/or accumulations.

MAC unit is used for high performance digital signal

processing systems. The DSP applications include filtering,

convolution, and inner products. The MAC inputs are

obtained from the memory location and given to the

multiplier block. The functionality of MAC unit enables

high-speed filtering and other processing typical for DSP

applications. Multiplication-and-accumulate operations are

typical for digital filters. Therefore, the functionality of the

MAC unit enables high-speed filtering and other processing

typical for DSP applications. Since the MAC unit operates

completely independent of the CPU, it can process data

separately and thereby reduce CPU load.

Figure 3: MAC architecture using modified DA

Paper ID: SUB154058 452

http://en.wikipedia.org/wiki/Parallel_communication
http://en.wikipedia.org/wiki/Serial_communication

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3.5 Pipeline registers

Pipeline registers preserve the result of a previous stage’s

execution so that the stage’s hardware can be used for the

next instruction. Enables are not needed for the registers

since they are update on every clock cycle. Pipelining results

in speed enhancement which reduces the power

consumption.

3.6 Bit shift registers

Inputs are given as parallel bits simultaneously and

coefficients are predefined in the LUT.

3.7 Look up table

Look up table is a basic building block of processor. This

configuration is to reduce memory size, logic gate count and

improve the speed of operation. Digital filters are becoming

ever-present in audio applications. As a result, good digital

filter performance is important to audio system design.

Digital filters differ from conventional analog filters by their

use of finite precision to represent signals and coefficients

and finite precision arithmetic to compute the filter response.

The FPGA utilizes lookup tables (LUT) to implement multi-

level functions in order to maximize node sharing in a

Boolean network. Since the invention of FPGAs in the mid-

1980s, Look-up-tables (LUTs) have been the basis of FPGA

logic blocks. A K-LUT is a single-output memory with K

address lines that can implement any Boolean function that

uses up to K variables. The earliest FPGAs used 4-LUTs,

established as the best LUT size to maximize area

efficiency. The extra outputs can be added onto their LUTs

which is a straightforward modification. Since the nature of

a LUT’s implementation in hardware, is a tree structure. The

LUTs in modern FPGAs are reduced to smaller LUTs. In the

look-up-table (LUT)-multiplier-based approach, the memory

elements stores all the possible values of products of the

filter coefficients which could be an area-efficient and this is

an alternative to DA-based design of FIR filter.

4. Performance Evaluation

Based on the evaluation done between ROM and RAM

based Delay the proposed method (i.e) RAM based LUT’s

has more benefits. The area utilization has much reduced

(nearly 20% reduced) for RAM based LUT’s. And also the

memory usage, delay consumption gets reduced. Simulation

results for ROM and RAM Based LUT shown in figure 4

and 5.The comparative analysis shown in table 3.1.

Table 3.1. Performance Analysis
Content Existing

(ROM LUT)

Proposed

(RAM LUT)

Area Utilization 65% 41%

Delay 14.530ns logic 12.944ns logic

Memory Usage 325148 Kilobytes 322844 Kilobytes

Here the FIR filter taken for result is 5tap. And the input bit

width is 8.

Figure 4: Simulation result for ROM Based LUT

Figure 5: Simulation result for RAM Based LUT

Paper ID: SUB154058 453

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 6: Floorplan Design View of ROM Based LUT

Figure 7: RTL View of ROM Based LUT

Figure 8: RTL view of RAM Based LUT

In figure 6 and 7 shows that the floorplan design view and

RTL view of ROM based LUT. The RAM based LUT is

best one compared with ROM based LUT. The RTL view

and floorplan design view of RAM based LUT shown in

figure 8 and 9.

Figure 9: Floorplan Design View of RAM based LUT

5. Conclusion

Since ROM based LUT’s reduces the complexity of

multiplier structures, due to the linearity between

coefficients and filter order, it increases the memory

requirement. And also during the run time the FIR filter

coefficients changing. For that we proposed the high

throughput reconfigurable FIR filter using modified DA

method. In reconfigurable DA based FIR filters the Look up

Tables are implemented in RAM. A shared LUT design is

suggested for the implementation of RAM which

substantially reduces the hardware cost. Since RAM is an

erasable one, it reduces the memory as well as bit slices

(nearly 40%). The bit slice is a basic building block of a

processor. The proposed approach supports beyond MHZ

sampling rate. It is found to produce high throughput than

the existing approach.

In future it can be implemented with fault toleration

techniques. The idea is to show that parallel filters can be

protected using error correction codes (ECCs) in which each

filter is the equivalent of a bit in a traditional ECC. An error-

correcting code is an algorithm for expressing a sequence of

numbers such that any errors which are introduced can be

detected and corrected (within certain limitations) based on

the remaining numbers. Hamming codes can detect up to

two-bit errors or correct one-bit errors without detection of

uncorrected errors.

6. Acknowledgment

I would like to thank my supervisor, Department of

Electronics and Communication Engineering, Parisutham

Institute of Technology and science, Thanjavur, for his help

and guidance to enable me to propose this paper.

Paper ID: SUB154058 454

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] Jayasudha, N., Sathiya, K.G., “Reconfigurable

Architectures for FIR filter with Low-Power

Consumption”, IEEE conf. Communication and

Embedded syst, Feb 2013.

[2] M. Kumm, K. Moller, and P. Zipf, “Dynamically

reconfigurable FIR filter architectures with fast

reconfiguration,” in Proc. 8th Int. Workshop ReCoSoC,

Jul. 2013, pp. 1–8.

[3] P. K. Meher and S. Y. Park, “High-throughput pipelined

realization of adaptive FIR filter based on distributed

arithmetic,” in Proc. IEEE/IFIP 19th Int. Conf. VLSI-

SOC, Oct. 2011, pp. 428–433.

[4] Dongwon Lee., Georgia Inst. of Technol.,

Atlanta”Reconfigurable and Area efficient Architecture

for symmetric FIR filters with power of two

coefficients, IEEE Conf. Nov. 2007.

[5] P. K. Meher, “Hardware-efficient systolization of DA-

based calculation of finite digital convolution,” IEEE

Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 8, pp.

707–711, Aug. 2006.

[6] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V.

Anderson, “LMS adaptive filters using distributed

arithmetic for high throughput,” IEEE Trans. Circuits

Syst. I, Reg. Papers, vol. 52, no. 7, pp. 1327–1337, Jul.

2005.

Paper ID: SUB154058 455

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jayasudha,%20N..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dongwon%20Lee.QT.&searchWithin=p_Author_Ids:37578847500&newsearch=true

