
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Design and Implementation of a Random Number

Generator on FPGA

Vishakha V. Bonde
1
, A. D. Kale

2

1Student, Electronics and Telecommunication Engg, Sant Gadge Baba University Amravati, .India.

2Assistant Professor, Electronics and Telecommunication Engg, Sant Gadge Baba University Amravati, India.

Abstract: Random numbers are used in a wide variety of applications. True random number generators are slow and expensive for

many applications while pseudo random number generators (RNG) suffice for most applications. Although a majority of random

number generators have been implemented in software level, increasing demand exists for hardware implementation due to the advent

of faster and high density Field Programmable Gate Arrays (FPGA). FPGAs make it possible to implement complex systems, such as

numerical calculations, genetic programs, simulation algorithms etc., at hardware level. This paper discusses in detail the hardware

implementation of several RNGs and their characteristics. Random number generator is required extensively by many applications like

cryptography, simulation, numerical analysis, text-to-speech etc. Most C libraries have a pair of library routines for initializing, and

then generating random numbers. For parametric speech synthesis application, a random number generator is required to produce

noise samples. Therefore, a need has been felt for the design of a dedicated hardware for random number generator that generates one

random number per cycle so that text-to speech conversion is done in real time.

Keywords: Random Number Generator, Cryptography, C, synthesis, text-to-speech, FPGA

1. Introduction

Random numbers are widely used in various applications

such as Monte Carlo simulations, cryptography, simulations

of wireless communication systems, electronic circuit

testing, genetic programming, data encryption, games etc.

Usually, random numbers are generated using software

algorithms. Although the sequence of numbers they produce

seems random, they are not truly random. It is difficult to

program a series of logical steps that produce numbers that

do not follow some definite sequence. These random

numbers are called Pseudo random numbers. True random

numbers can be generated from a physical process, such as

measuring thermal noise or noise power level in a radio-

frequency receiver, photoelectric effect or other quantum

phenomena. These processes are, in theory, completely

unpredictable. True random number generators can be

implemented by combining both analog and digital

electronics. These generators generally tend to be expensive

as well as slow. High density and high speed programmable

logic devices, such as Field Programmable Gate Arrays, have

made it possible to implement complex systems completely

Embedded in hardware. For instance, some of the genetic

algorithms and cryptography algorithms which had been

originally implemented in software have now been

implemented in hardware. LFSR is the traditional method for

generating random numbers which uses shift

registers. VHSIC HDL prefer because of its flexibility and

writing commands. FPGA can implement any logical

expression i.e. it is predefined reconfigurable IC. It can be

reconfigured any number of time. Therefore FPGA is used

for rapid prototype development as compared to ASIC.

The 8 and 16 bit length sequence using verilog HDL

implemented on FPGA kit. Also the comparison between

8and 16 bits on the basis of synthesis and simulation result.

FPGA can implement any logical expression i.e. it is

predefined reconfigurable IC. It can be reconfigured any

number of time. Therefore FPGA kit is used for rapid

prototype development as compared to ASIC; hence FPGA

is used to implement design. There are two main approaches

to generating random numbers using a computer: Pseudo-

Random Number Generators (PRNGs) and True Random

Number Generators (TRNGs). The approaches have quite

different characteristics and each has its pros and cons.

2. Literature Review

From the rigorous review of related work and published

literature, it is observed that many researchers have

designed random number generation by applying different

techniques. Researchers have undertaken different

systems, processes or phenomena with regard to design

and analyze RNG content and attempted to find the

unknown parameters. A pseudorandom number generator

(PRNG),is an algorithm for generating a sequence of

numbers that approximates the properties of random

numbers. These sequences are not truly random. Although

sequences that are closer to truly random can be generated

using hardware random number generators, pseudorandom

numbers are important in practice for simulations (e.g., of

physical systems with the Monte Carlo method), and are

important in the practice of cryptography.

Ray C. C. Cheung, Dong-U Lee, John D. Villasenor [1],

presented an automated methodology for producing

hardware-based random number generator (RNG) designs

for arbitrary distributions using the inverse cumulative

distribution function (ICDF). The ICDF is evaluated via

piecewise polynomial approximation with a hierarchical

segmentation scheme that involves uniform segments and

segments with size varying by powers of two which can

adapt to local function nonlinearities. Analytical error

analysis is used to guarantee accuracy to one unit in the last

place (ulp). Compact and efficient RNGs that can reach

Paper ID: SUB153985 203

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

arbitrary multiples of the standard deviation can be

generated. For instance, a Gaussian RNG based on our

approach for a Xilinx Virtex-4 XC4VLX100-12 field-

programmable gate array produces 16-bit random samples up

to 8.2delta. It occupies 487 slices, 2 block-RAMs, and 2

DSP-blocks. The design is capable of running at 371 MHz

and generates one sample every clock cycle. The designs are

capable of generating random numbers from arbitrary

distributions provided that the ICDFs is known.

GU Xiao-chen, ZHANG Min-xuan [2] presented ―Uniform

Random Number Generator using Leap-Ahead LFSR

Architecture‖. Introducing a new kind of URNG using

Leap-Ahead LFSR Architecture which could generate an m-

bits random number per cycle using only one LFSR. A

normal LFSR could only generate one random bit per cycle.

As multi-bits is required to form a random number in most

applications, Multi-LFSRs architecture is used to implement

a URNG. This means 32 different LFSRs are needed in a 32-

bit output URNG. But Leap-Ahead architecture could avoid

this and generate one multi-bits random number per cycle

using only one LFSR. The Leap-Ahead architecture

consumes less than 10% of slices which the Multi-LFSR

architecture consumes. One of the reasons for this is that the

Leap-Ahead architecture has only 1LFSR in the URNG

hardware, while the Multi-LFSR architecture has 18. The

other reason is that every register in the URNG has to be

initialed separately when the circuit is restarted, and the logic

for this is complicated. As the Multi-LFSR architecture has

18×18registers, while the Leap-Ahead architecture has only

23registers, it needs more slices for the initializing function.

By implementing the Leap-Ahead LFSR architecture and

Multi-LFSR architecture of both Galois type and Fibonacci

type on Xilinx Vertex 4 FPGA, we acquire the conclusion

that, with only very little lost in speed, Leap-Ahead LFSR

architecture consumes only 10% slices of what the Multi-

LFSR architecture does to generate the random numbers that

have the same period. By comparison with other URNGs,

Leap-Ahead LFSR architecture has very good Area Time

performance and Throughput performance that are 2.18×10-

9 slices×sec per bit and 17.87×109 bits per sec.

Jonathan M. Comer, Juan C. Cerda, Chris D. Martinez, and

David H. K. Hoe [3] introduced new architecture using

Cellular Automata. Cellular Automata (CA) have been found

to make good pseudo-random number generators (PRNGs),

and these CA-based PRNGs are well suited for

implementation on Field Programmable Gate Arrays

(FPGAs). To improve the quality of the random numbers that

are generated, the basic CA structure is enhanced in two

ways. First, the addition of a super-rule to each CA cell is

considered. The overviews of the design of linear feedback

shift register (LFSRs) and cellular automata (CA), followed

by a review of related works that have utilized LFSR and CA

for generating random numbers. Therefore, evaluated the

performance of CA-based PRNGs suitable for

implementation on FPGAs. Synthesis results for the Xilinx

Spartan 3E FPGA give a good idea of the relative resources

required for each configuration.

Pawel Dabal, Ryszard Pelka [4] presented ―FPGA

Implementation of Chaotic Pseudo-Random Bit Generators‖

Modern communication systems (including mobile systems)

require the use of advanced methods of information

protection against unauthorized access. Therefore, one of the

essential problems of modern cryptography is the generation

of keys having relevant statistical properties. In recent years,

the cryptographers pay an increasing attention to digital

systems based on chaos theory. The use of chaotic signals to

carry information .An idea of using a nonlinear chaotic

dynamic system for design of cryptographic secure pseudo-

random number or bit generator (PRNG or PRBG) seems to

be interesting from practical reasons.

Carlos Arturo Gayoso, C. González, L. Arnone, M. Rabini,

Jorge Castiñeira Moreira, [5] presented ―Pseudorandom

Number Generator Based on the Residue Number System

and its FPGA Implementation‖ Residue Number System

(RNS), which allows us to design a very fast circuit that has

a very different way of operating with respect to other

generators. A set of classic tests, the Diehard test, the

statistic complexity test and the Hurst exponent test are used

to provide a measure of the quality of the randomness of the

proposed pseudorandom number generator. David B.

Thomas, Wayne Luk, [6] presented ―The LUT-SR Family of

Uniform Random Number Generators for FPGA

Architectures‖.

A type of FPGA RNG called a LUT-SR RNG, which takes

advantage of bitwise XOR operations and the ability to turn

lookup tables (LUTs) into shift registers of varying lengths.

This provides a good resource–quality balance compared to

previous FPGA-optimized generators, between the previous

high-resource high-period LUT-FIFO RNGs and low-

resource low-quality LUTOPT RNGs, with quality

comparable to the best software generators. The LUT-SR

generators can also be expressed using a simple C++

algorithm contained within this paper, allowing 60 fully-

specified LUT-SR RNGs with different characteristics to be

embedded in this paper, backed up by an online set of very

high speed integrated circuit hardware description language

(VHDL) generators and test benches.

Ravi Saini, Sanjay Singh, Anil K Saini, A S Mandal,

Chandra Shekhar [7] presented ―Design of a Fast and

Efficient Hardware Implementation of a Random Number

Generator in FPGA‖ presents a fast and efficient hardware

implementation of a pseudo-random number generator based

on Lehmer linear congruential method. Demonstrated in this

paper that how the introduction of application specificity in

the architecture can deliver huge performance in terms of

area and speed. The design has been specified in VHDL and

is implemented on Xilinx FPGA device XC5VFX130T-

3ff1738 and takes up only 23 slice LUTS.

In 2014, Purushottam Y. Chawle and R.V. Kshirsagar [8] ,

presented a simple algorithm to generate pseudo random

number using Linear Feedback Shift register(LFSR).The

generated pseudo sequence is mainly used for

communication process such as cryptographic, encoder and

decoder application in coded format.

In LFSR operation, the linear operation of single bit is

exclusive-or (X-OR). The 8 and 16 bit LFSR is designed

using verilog HDL language to study their performance and

Paper ID: SUB153985 204

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

randomness. LFSR is a shift register whose output random

state is depend on feedback polynomial.

3. Analysis of Problem

In examining the quality of the samples, it is seen that the

differences between the samples produced by the hardware

and the corresponding samples that would be produced using

an ICDF approximation with floating point accuracy. Bit-

widths of signals are important parameters that designers can

tweak to improve the quality of a design in terms of area,

latency, and throughput. The goal is to use the minimal bit-

widths to each signal, while respecting error constraints at

the output. The Leap-Ahead architecture acquires much

higher working frequency, while consumes much less slices.

So, the Area Time performance of Leap-Ahead architecture

is 2.18 slices×sec per bit, much better than the other ones..

Leap-Ahead architecture works slower than the Multi-LFSR

architecture. This is because the feedback logic is much more

complicated in the Leap-Ahead architecture. And the Fan-

Out of each register is larger, too.

4. Objectives

1) To study the different algorithm about random number

generator.

2) To study the hardware language platform VHDL.

3) To design and implement the various technique about

Random number generation.

4) Verify the functionality of random number generation.

5) Analyze the design for FPGA device utilization

summary, propagation delay and maximum operating

frequency of design.

5. Field-Programmable Gate Array (FPGA)

5.1 Introduction

A field-programmable gate array (FPGA) is an integrated

circuit created to be configured by the customer after

manufacturing—hence "field-programmable". The FPGA

configuration is generally defined using a hardware

description language (HDL), similar to that used for an

application-specific integrated circuit (ASIC) (circuit

diagrams were previously used to specify the configuration,

as they were for ASICs, but this is increasingly rare). FPGAs

can be used to implement any logical function that an ASIC

can perform. The ability to update the functionality after

shipping, partial re-configuration of the portion of the design

and the low non-recurring engineering costs relative to an

ASIC design, offer advantages for many applications.

FPGAs contain programmable logic components called

"logic blocks", and a hierarchy of reconfigurable

interconnects that allow the blocks to be "connected

together"—somewhat like a one-chip programmable

breadboard. Logic blocks can be configured to perform

complex combinational functions, or merely simple logic

like AND and NAND. In most FPGAs, the logic blocks also

include memory elements, which may be simple flip-flops or

more complete blocks of memory.

6. Proposed Work

6.1 Linear feedback shift register

Figure 6.1.:A 8-bit LFSR

The XOR gate provides feedback to the register that shifts

bits from left to right. The maximal sequence consists of

every possible state except the "00000000" state.

In computing, a linear-feedback shift register (LFSR) is a

shift register whose input bit is a linear function of its

previous state.

The most commonly used linear function of single bits is

exclusive-or (XOR). Thus, an LFSR is most often a shift

register whose input bit is driven by the XOR of some bits of

the overall shift register value.

The initial value of the LFSR is called the seed, and because

the operation of the register is deterministic, the stream of

values produced by the register is completely determined by

its current (or previous) state. Likewise, because the register

has a finite number of possible states, it must eventually

enter a repeating cycle. However, an LFSR with a well-

chosen feedback function can produce a sequence of bits

which appears random and which has a very long cycle.

Applications of LFSRs include generating pseudo-random

numbers, pseudo-noise sequences, fast digital counters, and

whitening sequences. Both hardware and software

implementations of LFSRs are common.

6.2 Fibonacci LFSRs or Xorshift

Figure 6.2: A 8-bit Fibonacci LFSR

The feedback tap numbers correspond to a primitive

polynomial in the table so the register cycles through the

maximum number of 256 states excluding the all-zeroes

state. The bit positions that affect the next state are called the

taps. In the diagram the taps are [7,6,4,3]. The rightmost bit

of the LFSR is called the output bit. The taps are XOR'd

sequentially with the output bit and then fed back into the

leftmost bit. The sequence of bits in the rightmost position is

called the output stream. The arrangement of taps for

feedback in an LFSR can be expressed in finite field

arithmetic as a polynomial mod 2. This means that the

coefficients of the polynomial must be 1's or 0's. This is

called the feedback polynomial or reciprocal characteristic

Paper ID: SUB153985 205

http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Shift_register
http://en.wikipedia.org/wiki/Linear#Boolean_functions
http://en.wikipedia.org/wiki/Exclusive-or
http://en.wikipedia.org/wiki/Primitive_polynomial_%28field_theory%29
http://en.wikipedia.org/wiki/Primitive_polynomial_%28field_theory%29
http://en.wikipedia.org/wiki/Maximal_length_sequence
http://en.wikipedia.org/wiki/Pseudorandomness
http://en.wikipedia.org/wiki/Pseudorandomness
http://en.wikipedia.org/wiki/Pseudorandom_noise
http://en.wikipedia.org/wiki/Whitening_sequences
http://en.wikipedia.org/wiki/Finite_field_arithmetic
http://en.wikipedia.org/wiki/Finite_field_arithmetic
http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/Modular_arithmetic

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

polynomial. For example, if the taps are at the 7th, 6th, 4th

and 3rd bits (as shown), the feedback polynomial is

X
7
+X

6
+X

4
+X

3
+1

The 'one' in the polynomial does not correspond to a tap – it

corresponds to the input to the first bit (i.e. x
0
, which is

equivalent to 1). The powers of the terms represent the

tapped bits, counting from the left. The first and last bits are

always connected as an input and output tap respectively.

The LFSR is maximal-length if and only if the corresponding

feedback polynomial is primitive. This means that the

following conditions are necessary (but not sufficient):

 The number of taps should be even.

 The set of taps – taken all together, not pairwise (i.e. as

pairs of elements) – must be relatively prime. In other

words, there must be no divisor other than 1 common to all

taps.

6.3 Galois LFSRs

Named after the French mathematician Évariste Galois, an

LFSR in Galois configuration, which is also known as

modular, internal XORs as well as one-to-many LFSR, is an

alternate structure that can generate the same output stream

as a conventional LFSR (but offset in time). In the Galois

configuration, when the system is clocked, bits that are not

taps are shifted one position to the right unchanged. The taps,

on the other hand, are XOR'd with the output bit before they

are stored in the next position. The new output bit is the next

input bit. The effect of this is that when the output bit is zero

all the bits in the register shift to the right unchanged, and the

input bit becomes zero. When the output bit is one, the bits in

the tap positions all flip (if they are 0, they become 1, and if

they are 1, they become 0), and then the entire register is

shifted to the right and the input bit becomes 1.

Figure 6.3: A 8-bit Galois LFSR

To generate the same output stream, the order of the taps is

the counterpart (see above) of the order for the conventional

LFSR, otherwise the stream will be in reverse. Note that the

internal state of the LFSR is not necessarily the same. The

Galois register shown has the same output stream as the

Fibonacci register in the first section. A time offset exists

between the streams, so a different start point will be needed

to get the same output each cycle.

 Galois LFSRs do not concatenate every tap to produce the

new input (the XOR'ing is done within the LFSR and no

XOR gates are run in serial, therefore the propagation

times are reduced to that of one XOR rather than a whole

chain), thus it is possible for each tap to be computed in

parallel, increasing the speed of execution.

 In a software implementation of an LFSR, the Galois form

is more efficient as the XOR operations can be

implemented a word at a time: only the output bit must be

examined individually.

6.4 Blum Blum Shub

Blum Blum Shub (B.B.S.) is a pseudorandom number

generator proposed in 1986by Lenore Blum, Manuel Blum

and Michael Shub (Blum et al., 1986).Blum Blum Shub

takes the form:

Xn+1 = Xn
2
mod n

Where n=p x q is the product of two large primes p and q. At

each step of the algorithm, some output is derived from

xn+1; the output is commonly the bit parity of Xn+1 or one

or more of the least significant bits of Xn+1. The two primes,

p and q, should both be congruent to 3 (mod 4) .

Steps for executing Blum Blum Shub Generator

algorithm:

The Blum Blum Shub Generator is known to be the

cryptographically secure pseudo random number generator

(CSPRNG).

The algorithm for BBS generator is as follows:

 Select two big prime numbers p and q, such that both the

numbers leave a remainder of 3 when divided by 4.

 Choose n = p * q

 Choose seed s, such that s is relatively prime to n which

means that neither p nor q is a factor of s.

 Xo = s
2
 mod n

 The consequent values are generated according to the

formula Xi = (Xi1)
2
mod n

 A sequence of binary digits is produced according to the

formula Bi= Xi mod2

The output sequence is B1, B2, B3, B4……

Pipelining
Introduction

a) Pipelining

 Comes from the idea of a water pipe: continue sending

water without waiting the water in the pipe to be out

 leads to a reduction in the critical path

 Either increases the clock speed (or sampling speed) or

reduces the power consumption at same speed in a DSP

system

b) Parallel Processing

 Multiple outputs are computed in parallel in a clock

period

 The effective sampling speed is increased by the level

of parallelism

 Can also be used to reduce the power consumption

water pipe

An instruction pipeline is a technique used in the design of

computers to increase their instruction throughput (the

number of instructions that can be executed in a unit of

time). The basic instruction cycle is broken up into a series

called a pipeline. Rather than processing each instruction

sequentially (one at a time, finishing one instruction before

starting the next), each instruction is split up into a sequence

of steps so different steps can be executed concurrently (at

the same time) and in parallel (by different circuitry).

Pipelining increases instruction throughput by performing

multiple operations at the same time (concurrently), but does

Paper ID: SUB153985 206

http://en.wikipedia.org/wiki/Primitive_polynomial_%28field_theory%29
http://en.wikipedia.org/wiki/Even_and_odd_numbers
http://en.wikipedia.org/wiki/Relatively_prime
http://en.wikipedia.org/wiki/%C3%89variste_Galois

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

not reduce instruction latency (the time to complete a single

instruction from start to finish) as it still must go through all

steps. Indeed, it may increase latency due to additional

overhead from breaking the computation into separate steps

and worse, the pipeline may stall (or even need to be

flushed), further increasing latency. Pipelining thus increases

throughput at the cost of latency, and is frequently used in

CPUs, but avoided in real time systems, where latency is a

hard constraint. Each instruction is split into a sequence of

dependent steps. The first step is always to fetch the

instruction from memory; the final step is usually writing the

results of the instruction to processor

Registers or to memory. Pipelining seeks to let the processor

work on as many instructions as there are dependent steps,

just as an assembly line builds many vehicles at once, rather

than waiting until one vehicle has passed through the line

before admitting the next one. Just as the goal of the

assembly line is to keep each assembler productive at all

times, pipelining seeks to keep every portion of the processor

busy with some instruction. Pipelining lets the computer's

cycle time be the time of the slowest step, and ideally lets

one instruction complete in every cycle.

7. Results and Discussion

7.1 Simulation Result of LFSR

Figure 7.1: Simulation Result of LFSR

Timing report without pipeline

1. Minimum period: 2.225ns (Maximum Frequency:

449.438MHz)

2. Minimum input arrival time before clock: 3.654ns

3. Maximum output required time after clock: 4.394ns

Timing report with pipeline

1. Minimum period: 2.213ns (Maximum Frequency:

451.875MHz)

2. Minimum input arrival time before clock: 4.054ns

3. Maximum output required time after clock: 4.283ns

7.2 Fibonacci LFSR (Xorshift)

Simulation Result of Fibonacci LFSR

Figure 7.2: Simulation Result of Fibonacci LFSR

Timing report without pipelining

1. Minimum period: 3.455ns (Maximum Frequency:

289.436MHz)

2. Minimum input arrival time before clock: 4.229ns

3. Maximum output required time after clock: 4.283ns

Timing report with pipelining

1. Minimum period: 3.455ns (Maximum Frequency:

289.436MHz).

2. Minimum input arrival time before clock: 4.133ns

3. Maximum output required time after clock: 4.283ns

7.3 Galois LFSR

Simulation Result of Galois LFSR

Figure 7.3: Simulation Result of Galois LFSR

Timing report without pipelining

1. Minimum period: 2.411ns (Maximum Frequency:

414.766MHz)

2. Minimum input arrival time before clock: 3.872ns

3. Maximum output required time after clock: 4.394ns

Timing report with pipelining

1. Minimum period: 2.411ns (Maximum Frequency:

414.766MHz)

2. Minimum input arrival time before clock: 3.776ns

3. Maximum output required time after clock: 4.394ns

7.4 Blum Blum Shub

Simulation Result of BBS

Figure 7.4: Simulation Result of BBS

Timing report without pipelining

1. Minimum period: No path found

2. Minimum input arrival time before clock: 51.141ns

3. Maximum output required time after clock: 4.283ns

Timing report with pipelining
1. Minimum period: 46.666ns (Maximum Frequency:

21.429MHz)

2. Minimum input arrival time before clock: 50.584ns

Paper ID: SUB153985 207

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3. Maximum output required time after clock: 4.571ns

Comparative analysis of Throughput parameter

Table: Values of Throughput
Throughput LFSR Fibonacci

LFSR

Galois

LFSR

B.B.S

Without

pipeline

182x

107

189.16x107 206.6x107 156.424x107

With pipeline 186.784x107 193.56x107 212.2x107 158.152x107

8. Conclusion

Several different ways have been already examined to

increase randomness of random number generator. For a

single bit random number generator, LFSR is most effective

method. When multiple bits are required, LFSR can be

extended by utilizing extra time and extra circuitry.

Cryptographic algorithms and communication protocol are

based on random number generation. By implementing,

multi LFSR Architecture of both Fibonacci and Galois type

on FPGA, we acquire conclusion that with only very little

loss in speed, multi LFSR generate random number. For a

good BBS generator with a long period time the seed x0 and

the prime numbers P and Q must satisfy several

requirements. Since this generator does not process any

input, the unpredictability of the output is completely based

on the unpredictability of the seed. If the seed is guessed

once the whole output of the generator can be calculated.

Due to this property, a reduced strength has a more severe

impact than on entropy gathering or hybrid generators. The

BBS generator does not process any input and can thus be

applied when a reconstructible sequence of random numbers

is desired like in the case of stream ciphers. By

implementing pipelining, throughput of the various random

number generation methods increases.

9. Applications

Random numbers have applications in many areas:

simulation, game-playing, cryptography, statistical sampling,

evaluation of multiple integrals, particle transport

calculations, and computations in statistical physics, to name

a few. Since each application involves slightly different

criteria for judging the ―worthiness‖ of the random numbers

generated, a variety of generators have been developed, each

with its own set of advantages and disadvantages.

References

[1] Ray C. C. Cheung, John D. Villasenor, Wayne Luk,

―Hardware Generation of Arbitrary Random Number

Distributions From Uniform Distribution Via the

Inversion Method‖ vol.15, no. 8, August 2007.

[2] GU Xiao-chen, ZHANG Min-xuan ―Uniform Random

Number Generator using Leap- Ahead LFSR

Architecture‖2009 International Conference on Computer

and Communications Security.

[3] Jonathan M. Comer, Juan C. Cerda, Chris D. Martinez,

and David H. K. Hoe 44th IEEE Southeastern

Symposium on System Theory University of North

Florida, Jacksonville, FL March 11-13, 2012.

[4] Pawel Dabal, Ryszard Pelka ―FPGA Implementation of

Chaotic Pseudo-Random Bit Generators‖ MIXDES 2012,

19th International Conference "Mixed Design of

Integrated Circuits and Systems", May 24-26, 2012,

Warsaw, Poland.

[5] Carlos Arturo Gayoso, C. González, L. Arnone, M.

Rabini, Jorge Castiñeira Moreira, ―Pseudorandom

Number Generator Based on the Residue Number System

and its FPGA Implementation‖ 2013 Argentine School of

Micro-Nanoelectronics, Technology and Applications.

[6] David B. Thomas, Wayne Luk, ―The LUT-SR Family of

Uniform Random Number Generators for FPGA

Architectures‖ IEEE transactions on very large scale

integration (VLSI) systems, vol. 21, no. 4, April 2013

[7] Ravi Saini, Sanjay Singh, Anil K Saini, A S Mandal,

Chandra Shekhar ―Design of a Fast and Efficient

Hardware Implementation of a Random Number

Generator in FPGA‖ CSIR- Central Electronics

Engineering Research Institute (CSIR-CEERI) Pilani-

333031, Rajasthan, India 2013 International Conference

on Advanced Electronic Systems (ICAES).

[8] Purushottam Y. Chawle and R.V. Kshirsagar ―Design of

8 and 16 bit LFSR with maximum length feedback

polynomial using verilog HDL‖.13
th

 IRF international

conference 20
th

july 2014, Pune, India.

Author Profile

Vishakha V. Bonde received her BE degree in Electronics and

Telecommunication from Sant Gadge Baba Amravati University in

2012. Currently pursuing ME degree in Electronics and

Telecommunication from Sant Gadge Baba Amravati University,

India.

A.D.Kale received his BE degree in Electronics and

Telecommunication from Sant Gadge Baba Amravati University in

2009 and M. Tech. in Electronic System and Communication from

Sant Gadge Baba Amravati University in 2012. Currently working

as Assistant Professor in P. R. Patil COE, Amravati, India.

Paper ID: SUB153985 208

