
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Incorporating Google Cloud Based Pub/Sub in

Implementation of Identity Concentrated Encryption

Shilpashree K S
1
, Harshavardhan L

2

1, 2Department of CS&E, BGSIT, BG Nagar

Abstract: In a content-based publisher subscriber system it is very challenging to provide security mechanisms. This paper presents an

approach making use of the cloud environment at the middleware. Google Cloud Pub/Sub brings the scalability, flexibility, and

reliability of enterprise message-oriented middleware to the cloud. The identity based cryptography is used for the authentication of

publishers and subscribers.

Keywords: Google cloud, content-based, security, identity-based encryption.

1. Introduction

The publish/subscribe (pub/sub) communication paradigm

has gained high popularity because of its inherent

decoupling of publishers from subscribers in terms of time,

space, and synchronization. Publishers inject information

into the pub/sub system, and subscribers specify the events

of interest by means of subscriptions.

Published events are routed to their relevant subscribers,

without the publishers knowing the relevant set of

subscribers, or vice versa. This decoupling is traditionally

ensured by intermediate routing over a broker network. In

more recent systems, publishers and subscribers organize

themselves in a broker-less routing infrastructure, forming

an event forwarding overlay. Content-based pub/sub is the

variant that provides the most expressive subscription

model, where subscriptions define restrictions on the

message content. Its expressiveness and asynchronous

nature is particularly useful for large-scale distributed

applications such as news distribution, stock exchange,

environmental monitoring, traffic control, and public

sensing. Not surprisingly, pub/sub needs to provide

supportive mechanisms to fulfill the basic security demands

of these applications such as access control and

confidentiality. Access control is achieved as events are

delivered to authorized subscribers.

In the past, most research has focused only on providing

expressive and scalable pub/sub systems, but little attention

has been paid for the need of security. Existing approaches

toward secure pub/sub systems mostly rely on the presence

of a traditional broker network. These either address security

under restricted expressiveness, for example, by using only

keyword matching for routing events or rely on a network of

(semi-)trusted brokers. Fine grained access was not provided

in scalable manner. Clustering was made based on the

subscriptions.

Based on these results, this paper incorporates Google Cloud

Pub/Sub that brings the scalability, flexibility, and reliability

of enterprise message-oriented middleware to the cloud. By

providing many-to-many, asynchronous messaging that

decouples senders and receivers, it allows for secure and

highly available communication between independently

written applications. Google Cloud Pub/Sub delivers low-

latency, durable messaging that helps developers quickly

integrate systems hosted on the Google Cloud Platform and

externally. This paper has adapted identity-based encryption

(IBE) mechanisms [1], [2] 1) to ensure that a particular

subscriber can decrypt an event only if there is a match

between the credentials associated with the event and the

key; and 2) to allow subscribers to verify the authenticity of

received events.

2. System Model and Background

2.1 Content-Based Publish/Subscribe

For the routing of events from publishers to the relevant

subscribers, we use the content-based data model. The event

space, denoted by OMEGHA, is composed of a global

ordered set of d distinct attributes (Ai): OMEGHA={A1,

A2,….., Ad}. Each attribute Ai is characterized by a unique

name, its data type, and its domain.

The data type can be any ordered type such as integer,

floating point, and character strings. The domain describes

the range [Li, Ui] of possible attribute values. A subscription

filter f is a conjunction of predicates, i.e., f ={Pred1 ^ Pred2

…. ^ Predj}. Predi is defined as a tuple (Ai, Opi, vi), where

Opi denotes an operator and vi a value. The operator Opi

typically includes equality and range operations for numeric

attributes and prefix/suffix operations for strings.

An event consists of attributes and associated values. An

event is matched against a subscription f if the values of

attributes in the event satisfy the corresponding constraints

imposed by the subscription. It is considered that, pub/sub in

a setting where there exits no dedicated broker

infrastructure. Publishers and subscribers contribute as peers

to the maintenance of a self-organizing overlay structure. To

authenticate publishers, we use the concept of

advertisements in which a publisher announces beforehand

the set of events which it intends to publish.

2.2 Identity-Based Encryption

While a traditional PKI infrastructure requires to maintain

for each publisher or subscriber a private/public key pair

which has to be known between communicating entities to

encrypt and decrypt messages, identity-based encryption [3]

Paper ID: SUB151978 2927

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

provide a promising alternative to reduce the amount of keys

to be managed. In identity-based encryption, any valid string

which uniquely identifies a user can be the public key of the

user. A key server maintains a single pair of public and

private master keys. The master public key can be used by

the sender to encrypt and send the messages to a user with

any identity, for example, an e-mail address.

Figure 1: Identity based encryption

To successfully decrypt the message, a receiver needs to

obtain a private key for its identity from the key server. Fig.

1 shows the basic idea of using identity-based encryption.

We want to stress here that although identity-based

encryption at the first glance appears like a highly

centralized solution, its properties are ideal for highly

distributed applications. A sender needs to know only a

single master public key to communicate with any identity.

Similarly, a receiver only obtains private keys for their own

identities. Furthermore, an instance of central key server can

be easily replicated within the network. Finally, a key server

maintains only a single pair of master keys and therefore,

can be realized as a smart card, provided to each participant

of the system.

3. Approach Overview

Google Cloud Pub/Sub brings the scalability, flexibility, and

reliability of enterprise message-oriented middleware to the

cloud. By providing many-to-many, asynchronous

messaging that decouples senders and receivers, it allows for

secure and highly available communication between

independently written applications. Google Cloud Pub/Sub

delivers low-latency, durable messaging that helps

developers quickly integrate systems hosted on the Google

Cloud Platform and externally.

Figure 2: Google Cloud Pub/Sub.

publisher application creates and sends messages to a topic.

Subscriber applications create a subscription to a topic to

receive messages from it. Communication can be one-to-

many, many-to-one and many-to-many

Figure 3: Message flow in Cloud Pub/Sub

3.1 Common scenarios

Here are some classic use cases for Google Cloud Pub/Sub:

 Balancing workloads in network clusters. For example,

a large queue of tasks can be efficiently distributed among

multiple workers, such as Google Compute Engine

instances.

 Implementing asynchronous workflows. For example,

an order processing application can place an order on a

topic, from which it can be processed by one or more

workers.

 Distributing event notifications. For example, a service

that accepts user signups can send notifications whenever

a new user registers, and downstream services can

subscribe to receive notifications of the event.

Paper ID: SUB151978 2928

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Refreshing distributed caches. For example, an

application can publish invalidation events to update the

IDs of objects that have changed.

 Logging to multiple systems. For example, a Google

Compute Engine instance can write logs to the monitoring

system, to a database for later querying, and so on.

 Data streaming from various processes or devices. For

example, a residential sensor can stream data to backend

servers hosted in the cloud.

 Reliability improvement. For example, a single-zone

Compute Engine service can operate in additional zones

by subscribing to a common topic, to recover from failures

in a zone or region.

3.2 Benefits and features

 Unified messaging: Durability and low-latency delivery

in a single product

 Global presence: Connect services located anywhere in

the world

 Flexible delivery options: Both push- and pull-style

subscriptions supported

 Data reliability: Replicated storage and guaranteed at-

least-once message delivery

 End-to-end reliability: Explicit application-level

acknowledgement

 Data security and protection: Encryption of data on the

wire and at rest

 Flow control: Dynamic rate limiting implemented by the

Pub/Sub system

 Simplicity: Easy-to-use REST/JSON API

3.3 Pub/Sub concepts and data flow

Here is an overview of the components in the pub/Sub

system and how data flows between them:

Figure 4: Pub/Sub data flow

1. A publisher application creates topic in the Google Cloud

Pub/Sub service and sends messages to the topic. A

message contains a payload and optional attributes that

describe the payload content.

2. Messages are persisted in a message store until they are

delivered and acknowledged by subscribers.

3. The Pub/Sub service forwards messages from a topic to

all of its subscriptions, individually. Each subscription

receives messages either by Pub/Sub pushing them to the

subscriber's chosen endpoint, or by the subscriber pulling

them from the service.

4. The subscriber receives pending messages from its

subscription and acknowledges each one to the Pub/Sub

service.

5. When a message is acknowledged by the subscriber, it is

removed from the subscription's queue of messages.

3.4 Publisher and subscriber endpoints

Publishers can be any application that can make HTTPS

requests to googleapis.com which is an App Engine app, a

web service hosted on Google Compute Engine or any other

third-party network, an installed app for desktop or mobile

device, or even a browser.

Figure 5: Publisher Subscriber end points

Pull subscribers can also be any application that can make

HTTPS requests to googleapis.com. Currently, push

subscribers must be Webhook endpoints that can accept

POST requests over HTTPS.

4. Conclusion

This paper presents techniques from identity based

encryption 1) to ensure that a particular subscriber can

decrypt an event only if there is a match between the

credentials associated with the event and its private keys and

2) to allow subscribers to verify the authenticity of received

events. Google Cloud Pub/Sub brings the scalability,

flexibility, and reliability of enterprise message-oriented

middleware to the cloud. By providing many-to-many,

asynchronous messaging that decouples senders and

receivers, it allows for secure and highly available

communication between independently written applications.

Google Cloud Pub/Sub delivers low-latency, durable

messaging that helps developers quickly integrate systems

hosted on the Google Cloud Platform and externally. This

approach is not recommended for production use.

Paper ID: SUB151978 2929

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-

Policy Attribute-Based Encryption,” Proc. IEEE Symp.

Security and Privacy, 2007.

[2] V. Goyal, O. Pandey, A. Sahai, and B. Waters,

“Attribute-Based Encryption for Fine-Grained Access

Control of Encrypted Data,”

[3] D. Boneh and M.K. Franklin, “Identity-Based

Encryption from the Weil Pairing,” Proc. Int’l

Cryptology Conf. Advances in Cryptology,2001.

[4] M. Nabeel, N. Shang, and E. Bertino, “Efficient Privacy

Preserving Content Based Publish Subscribe Systems,”

Proc. 17th ACM Symp. Access Control Models and

Technologies, 2012.

[5] H. Khurana, “Scalable Security and Accounting

Services for Content-Based Publish/Subscribe

Systems,” Proc. ACM Symp.

[6] Applied Computing, 2005.

[7] M. Ion, G. Russello, and B. Crispo, “Supporting

Publication and Subscription Confidentiality in Pub/Sub

Networks,” Proc. Sixth Int’l ICST Conf. Security and

Privacy in Comm. Networks (SecureComm),2010.

Author Profile

Shilpashree K S received the B.E degree in Computer

Science from VTU Karnataka in 2013, and currently

he is a post graduate student pursuing M.Tech in

Computer Science and Engineering from B.G.S

Institute of Technology under Visvesvaraya Technological

University Karnataka. She has presented 2 papers in National

Conferences; her main research interests include computer

networks, cloud computing and wireless sensor networks. She is

currently doing his project in Cloud Computing.

Harshavardhan L is working as an assistant professor in BGSIT,

BG Nagar, Visvesvaraya Technological University, Karnataka. His

bareas of interest are algorithm, Encryption, Computer Graphics

etc.

Paper ID: SUB151978 2930

