
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Constraint Generation Tool for White-box Testing

Kshamata Shenoy
1
, Madhuri Rao

2
, S. S Mantha

3

1Assistant Professor, BabaSaheb Gawde Institute of Technology, Mumbai, India

2Assistant Professor, Department of Information Technology Thadomal Shahani College Mumbai

3Chairman AICTE Prof CAD/CAM, Robotics VJTI College Mumbai. India

Abstract: Testing of database application is crucial for ensuring high software quality as undetected faults can result in unrecoverable

data corruption. Conventionally database application testing is based upon whether or not the application can perform a set of

predefined functions. While it is useful to achieve a basic degree of quality by considering the application to be a black box in the testing

process white box testing is required for more thorough testing. However the semantics of the structural query language (SQL)

statements embedded in database application are rarely considered in conventional white box testing techniques. In this paper we study

the generation of constraints that respect the semantics of SQl statements embedded in a database application program. We have

described a tool which generates a set of constraints. Database instance for program testing can be derived by solving the set of

constraints using existing constraint solvers.

Keywords: Database Application, SQL, Constraint Satisfaction Problem

1. Introduction

Database application program play an important role in

commercial systems. These programs interact with a database

system to realize a predefined logic in manipulating business

data. While database application program realize application

logic in some host language, database systems provide

mechanisms for efficient access to and manipulation of

massive volume of data. Database programs are often

expected to exhibit high reliability. Faults if occurring in a

database program can result in unrecoverable data corruption.

Since not all database transactions can be unrolled, restoring

data from backups cannot eradicate the errors.

Testing of database application is crucial for ensuring high

software quality as undetected faults can result in

unrecoverable data corruption. The problem of database

application testing can be broadly partitioned into the

problems of test cases generation, test data preparation and

test outcomes verification. Among the three problems, the

problem of test cases generation directly affects the

effectiveness of testing.

Basically, a CSP is a problem composed of a finite set of

variables, each of which is associated with a finite domain,

and a set of constraints that restricts the values the variables

can simultaneously take. The task is to assign a value to each

variable satisfying all the constraints

CSPs are mathematical problems defined as a set of objects

whose state must satisfy a number of constraints or

limitations. CSPs represent the entities in a problem as a

homogeneous collection of finite constraints over variables,

which are solved by constraint satisfaction methods. CSPs

are the subject of intense research in both artificial

intelligence and operations research, since the regularity in

their formulation provides a common basis to analyze and

solve problems of many unrelated families. CSPs, require a

combination of heuristics and combinational search methods

to be solved in a reasonable time.

2. Testing Database Application

Database application programs play a central role in our

information based society, so testing whether they behave

correctly is of great importance. Because of the huge space of

possible database states that must be considered, these

programs pose new challenges to software testing. On the

other hand, the structure of this state space and constraints on

legitimate states expressed in the database schema and in

additional business rules, offer an opportunity for automatic

generation of tests.

Test Case Generation

Database management systems are widely used in many

applications. The data stored in the databases is an important

corporate asset and it is therefore important that the database

system is error-free and stable. Many applications rely on the

DBMS for actual implementation as well. The best way to

ensure the reliability of this is to do DBMS testing regularly.

Testing can also help eliminate bugs early on and save a lot

of time in implementing the system. DBMS testing, in

general, is a labor intensive, time-consuming process, often

performed manually. Automating DBMS testing not only

reduces development costs, but also increases the reliability

in the developed systems. White box testing techniques like

statement testing, branch testing, condition coverage and path

testing [11] can be employed to test some portions of or

whole database application to attain a more complete testing

of the application. White box testing lets testers examine the

code in detail and make sure that at least a certain degree of

test coverage such as execution of every statement has been

achieved [11]

Test Data Preparation

A System is programmed by its data. Functional testing can

suffer if data is poor, and good data can help improve

functional testing. Good test data can be structured to

improve understanding and testability. Its contents, correctly

chosen, can reduce maintenance effort and allow flexibility.

Paper ID: 23051501 2827

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Preparation of the data can help to focus the business where

requirements are vague.

Test Outcome Verification:

Verification and validation is the process of checking that a

product, service, or system meets specifications and that it

fulfills its intended purpose. Verification is a Quality control

process that is used to evaluate whether or not a product,

service, or system complies with regulations, specifications

or conditions imposed at the start of a development phase.

Verification can be in development, scale-up, or production.

This is often an internal process.

Validation is a Quality assurance process of establishing

evidence that provides a high degree of assurance that a

product, service, or system accomplishes its intended

requirements. This often involves acceptance of fitness for

purpose with end users and other product stakeholders.

3. Basics of SQL

In this section, we overview some basic concepts of database

application programs. Readers are referred to [4,9] for more

details.

A. The Relational Model

Its central idea is to describe a database as a collection of

predicates over a finite set of predicate variables, describing

constraints on the possible values and combinations of values.

The content of the database at any given time is a finite

(logical) model of the database, i.e. a set of relations, one per

predicate variable, such that all predicates are satisfied. A

request for information from the database (a database query)

is also a predicate.

The purpose of the relational model is to provide a

declarative method for specifying data and queries. We

directly state what information the database contains and

what information we want from it, and let the database

management system software take care of describing data

structures for storing the data and retrieval procedures for

getting queries answered.

Table 1: Information About Employees

Eid Name Age Gender Position Salary

 1 Suresh 38 Male President 67000

2 Sakshi 36 Female Secretary 45000

3 Vaibhav 22 Male Manager 35000

Example 1. An Employee table may have the attribute eid,

name, age, gender, position, etc. Each row gives information

about a particular employee. A specific Employee table is

given as Table1.

The relational model is closely related to the first-order

predicate calculus. It is known that the relational algebra with

the basic operators such as union and join has the same

expressive power as first-order predicate logic [4]. In this

paper, we focus on a subset of SQL and formulate it using

the many-sorted predicate calculus. In the calculus, a table is

treated as a sort which consists of all the rows of the table.

Each column corresponds to a function. Let us look at

Table1. We can consider employee as a set of three elements:

el, e2 and e3.

The functions are defined as follows:

eid (e1) = 1, eid (e2) = 2, eid(e3) = 3;

Age(e1) = 38 Age (e2) = 36 Age (e3) = 22;

B. The Query language

Although we refer to the SQL language as a “query

language,” it can do much more than just query a database. It

can define the structure of the data, modify data in the

database and specify security constraints.

In relational databases, data are retrieved using SQL

(Structured Query Language). A query statement of SQL

maps one or several input tables into a result table. The basic

structure of an SQL expression consists of three clauses:

select, from and where.

The select clause corresponds to the projection operation of

the relational algebra. It is used to list the attributes desired in

the result of a query.

The from clause corresponds to the Cartesian-product of the

relational algebra. It lists the relations to be scanned in the

evaluation of the expression.

The where clause corresponds to the selection predicate of

the relational algebra. It consist of a predicate involving

attributes of the relations that appear in the from clause.

A typical SQL query has the form

 Select t1.a1, t2.b2

 From t1, t2

 Where a1=b1;

Example 1. (Cont'd.) The following is a simple query

statement:

SELECT Eid

FROM Employee

WHERE position = 'manager' and

Gender. = 'female';

The result table has only one tuple whose Eid is 3.

More complicated queries may involve multiple tables. Other

conditions (or even sub queries) can be added to the WHERE

clause.

4. Database Instance Generation

A. The Problem

To test a program with embedded SQL statements, we need

to find appropriate input data, which include a database

instance. The conventional white-box testing methods are

inadequate because the execution of the program is affected

by the result of SQL statements. Let us consider the code

fragment in Section III C. The loop is not executed if the

query results in an empty table. For the purpose of white-box

testing, we need input data such that the loop is executed

once or not executed at all. Thus, test data generation for

database applications necessitates the tackling of the

following general problem.

Paper ID: 23051501 2828

http://en.wikipedia.org/wiki/Declarative

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Given an SQL statement and a property, find a database

instance such that the result of executing the statement

satisfies the property.

We understand that test data generation also comprises

finding the values of ordinary program variables. But in this

paper, we would like to focus on the database-specific

aspects and the generation of a database instance.

We refrain from giving a language to describe the properties.

The following are some examples of them:

(Pl) The result table is empty, i.e., it does not have any row.

(P2) The result table has a row which has a negative attribute

value.

(Pl) and (P2) represent the scenario of null case and

exception, respectively. These are two common properties

that practitioners used to test database application programs.

Let us denote the result table by Rst. Without loss of

generality, we assume that it has a single column. The above

properties can be represented by the following two formulas

in the syntax of SQL:-

(p1) NOT EXISTS Rst

(p2) 0 > ANY Rst

To solve a CSP, we need to find the values of the variables

such that all the constraints are satisfied. For the purpose of

test data generation, we use a formula to describe the

relationship between the input (database instance) and the

output (result table). Solutions satisfying the formula can be

computed using existing techniques and tools available in the

CSP community.

For simplicity, we assume that there are two tables (tl and t2)

and the attributes are denoted by a0, a1, a2…….. The selected

attribute is as. Suppose table t1 contains the rows t1i (1<=i<=m)

and table t2 contains the rows t2j (1<= j<= n). Let Cond

denote the condition in the WHERE clause. We first consider

the simpler case where condition does not involve sub

queries. Our goal is to determine the values of the following

entries such that some formula holds.

• t1i.ak, for each row i. and each attribute ak of t1

• t2j.al, for each row j and each attribute al of t2

The formula is generated based on an SQL statement and a

property.

For example,

• If the property is “EXISTS Rst”, the formula is V i,j C
1
(i, j);

• If the property is “const rop ALL Rst” (const is a numeric

constant, rop is a relational operator such as >=), the formula

is C
1
 (i,j) (const rop a

1
s)).

Here C
1
 (i.j) is derived from Cond by changing t1.ak to t1i.ak

and changing t2.al to t2j.al. Note that t1.ak and t2.al are used in

the SQL statement while t1i.ak and t2j.al denote unknowns of

the constraint satisfaction problem. If the selected attribute as

is from table t1, a
1
s is t1i.as; and if as is from table t2, is t2j.as.

If both t1 and t2 have the attribute as, the user should specify

explicitly which one is to be selected.

B Constraint Solving

It is fairly easy to see that a CSP can be given an incremental

formulation as a standard search problem as follows:

 Initial state : The empty assignment, in which all variables

are unassigned.

 Successor function: A value can be assigned to any

unassigned variable, provided that it does not conflict with

previously assigned variables.

 Goal test: The current assignment is complete.

The input given to the tool consists of a Schema, SQl

statement and an assertion and the required output is a set of

constraints.

The constraints generated are further verified in constraint

generation tool to see if they are satisfiable or not. If they are

satisfiable, the desired database instances are obtained. This

can be used for white-box testing which will assist the tester

significantly.

Schema

The schema of a database system is its structure described in

a formal language supported by the database management

system (DBMS). In a relational database, the schema defines

the tables, the fields, relationships, views, indexes, packages,

procedures, functions, queues, triggers, types, sequences,

materialized views, synonyms, database links, directories,

Java, XML schemas, and other elements.

The schema is given as follows

Create table t1

(a1 int,a2 float,a3 int) [1];

Create table t2

(b1 int ,b2 int) [2];

There are two tables having 3 attributes and 2 attributes,

respectively. We have specified that the first table has one

row and the second table has two rows. They can be changed

as per our requirements

Basic structure of SQL Queries

The basic structure of an SQL expression consists of three

clauses: select, from and where.

The select clause corresponds to the projection operation of

the relational algebra. It is used to list the attributes desired in

the result of a query

The from clause corresponds to the Cartesian-product of the

relational algebra. It lists the relations to be scanned in the

evaluation of the expression.

The where clause corresponds to the selection predicate of

the relational algebra. It consist of a predicate involving

attributes of the relations that appear in the from clause.

A typical SQL query has the form

Select t1.a1, t2.b2

From t1, t2

Where a1=b1;

Paper ID: 23051501 2829

http://en.wikipedia.org/wiki/Database_system
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Table_(database)
http://en.wikipedia.org/wiki/Field_(computer_science)
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/View_(database)
http://en.wikipedia.org/wiki/Index_(database)
http://en.wikipedia.org/wiki/Software_package_(installation)
http://en.wikipedia.org/wiki/Stored_procedure
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Queue_(data_structure)
http://en.wikipedia.org/wiki/Database_trigger
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Materialized_view
http://en.wikipedia.org/wiki/Synonym_(database)
http://en.wikipedia.org/w/index.php?title=Database_link&action=edit&redlink=1
http://en.wikipedia.org/wiki/Directory_(file_systems)
http://en.wikipedia.org/wiki/Java
http://en.wikipedia.org/wiki/XML_schema

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Assertion

An assertion is any condition that the database must always

satisfy. Domain constraints and referential-integrity

constraints are special forms of assertions. However there are

many constraints that we cannot express by using only these

special forms.

For example, “every loan has at least one customer who

maintains an account with a minimum balance of $1000.00”

must be expressed as an assertion. When an assertion is

created, the system tests it for validity. If the assertion is

valid, the any future modification to the database is allowed

only if it does not cause that assertion to be violated.

An assertion is a predicate expressing a condition that we

wish the database to be satisfied.

An assertion in SQL takes the form:

Create assertion < assertion-name > check < predicate>

Since SQL does not provide a “for all X, P(X)” construct

(where P is a predicate), we are forced to implement the

constraint by an equivalent construct, “not exist X such that

not P(X)”, that can be expressed in SQL.

When an assertion is created, the system tests it for validity.

If the assertion is valid, then any future modification to the

database is allowed only if it does not cause that assertion to

be violated. This testing may introduce a significant amount

of overhead if complex assertions have been made.

Assertion:

 Exists Result

If result exists we can give an assertion as exists result.

C. An Automatic ‘Tool’ for Constraint Generation

Figure 1: Constraint generation tool for white box testing

An automatic tool for generating constraints is as shown in

the figure 1. The input of the tool consists of three parts:

schema, SQL statement and assertion. The output is a set of

constraints (which can be given to BONUS).

5. Results

Example 1. The input is like this:

Schema:

create table tblTest3(nNum int, vcName varchar(50))[1];

create table tblTest4(nNum int, vcName varchar(50))[2];

create table tblTest5(nNum int, vcName varchar(50))[3];

Sql statement:

select *

from tblTest3

inner join tblTest4

 on tblTest3.nNum = tblTest4.nNum

inner join tblTest5

 on tblTest4.nNum = tblTest5.nNum;

Assertion:

Exists Result

There are three tables having 2 attributes respectively. The

first table has one row and the second table has two rows and

the third table has three rows. They can be changed as per

our needs. For instance we may look for two tables each

having three rows. The keyword RESULT denotes the result

of the query. In this example we are looking for three tables

such that the result table is not empty. With this tool we get

the following set of constraints:

Output:

int tblTest3_0_nNum;

varchar (50) tblTest3_0_vcName;

int tblTest4_0_nNum;

int tblTest4_1_nNum;

varchar(50) tblTest4_0_vcName;

varchar(50) tblTest4_1_vcName;

int tblTest5_0_nNum;

int tblTest5_1_nNum;

int tblTest5_2_nNum;

varchar(50) tblTest5_0_vcName;

varchar(50) tblTest5_1_vcName;

varchar(50) tblTest5_2_vcName;

bool b0 = (tblTest3_0_nNum = tblTest4_0_nNum);

bool b1 = (tblTest3_0_nNum = tblTest4_1_nNum);

bool b2 = (tblTest4_0_nNum = tblTest5_0_nNum);

bool b3 = (tblTest4_0_nNum = tblTest5_1_nNum);

bool b4 = (tblTest4_0_nNum = tblTest5_2_nNum);

bool b5 = (tblTest4_1_nNum = tblTest5_0_nNum);

bool b6 = (tblTest4_1_nNum = tblTest5_1_nNum);

bool b7 = (tblTest4_1_nNum = tblTest5_2_nNum);

{

AND

(OR (b0, b1),OR (b2, b3, b4, b5, b6, b7)

)

}

The above set of constraints has solutions which can be

found by any constraint solvers.

6. Comparative Study

SQL is a ubiquitous language used in a wide range of

applications for accessing the data stored in relational

databases. However, the usual software testing techniques are

not designed to address some important features of SQL.

Although many software testing techniques have been

proposed and adopted in day to day industrial practice, these

are not specifically tailored for handling the particularities of

the Structured Query Language (SQL).Our constraint

generated tool will be a definite advantage as a requirement

for the tester. Database instances can then be generated then

by solving these constraints.

Paper ID: 23051501 2830

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

7. Conclusion

The testing of database application programs has not received

much attention previously. In particular, few test data

generation techniques consider the inclusion of database

instances, which can be used for white-box testing. A

prototype tool is also described. Its input consists of an SQL

statement, the database schema definition, together with an

assertion which represents the requirement of the tester. The

output is a set of constraints which can be given to existing

constraint solvers. If they are satisfiable, we obtain the

desired database instances.

Certainly it is impossible to work out a fully automatic tool

for test data generation, even when the program does not

involve databases. But it is reasonable to expect that a

powerful tool will assist the tester significantly. Currently the

tool has some limitations. For instance it does not handle

string variables. We need to represent them as integer

instead.In the future we will improve the constraint

generation tool described in this paper.

References

[1] B. Beizer, Softvare Testing Techniques (Second Edition)

Van Nostrand Reinhold International Company Limited,

New York, 1990. Chapter 1, pages 8, 10-1 1, 20-

22,546,550.

[2] M.Y. Chan and S.C. Cheung, Testing Database

aplications with SQL semantics, Proc. of the 2
nd

 Int’l

Synzp. On Cooperative Database Systems for Advanced

Applications (CODAS’99), 364-375, March, 1999.

[3] D. Chays, S. Dan, P.G. Frankl, F.I. Vokolos and E.J.

Weyuker, A framework for testing database

applications,Proc. Int’l Symp. on Software Testing and

Analysis (ISSTA’OO), 147-157, August 2000.

[4] E.F. Codd, The Relational Model for Database

Management:Version 2, Addison-Wesley, Reading,

Mass., USA, 1990.

[5] P. G. Jeavons, D. A. Cohen, M. Gyssens,Closure

Properties of Constraints, Journal of the ACM, 44(4):

527- 548, July 1997.

[6] B. K. Patel, Automated tools for database design and

criteria for their selection for aerospace applications,

IEEE Aerospace Applications Conference Digest,.

[7] M.Roper, SofhYare Testing, New York, TheMcGraw-

Hill, Inc., 1994. Chapters 1-3, pages 32-96.

[8] E.Tsang, Foundations of Constraint Satisfaction

Academic Press, London, 1993. Chapters 1, 2,6,

10,pages 1- 52,1577188,299.

[9] J.D. Ullman and J. Widom, A First Course in Database

Systems, Prentice Hall, 1997.

[10] J. Zhang, Specification analysis and test datageneration

by solving Boolean combinations of numeric constraints,

Proc. of the first Asia-PaciJic ConJ: on Quality Software

(APAQS), (eds.) T.H.Tse and T.Y.Chen, 267- 274,2000.

[11] Marc Roper, Software Testing, The McGraw-Hill

Companies, Inc., 1994.

[12] M.Y.Chana and SC Cheung.Testing database

applications with SQL semantics. In Proceedings of the

2nd International Symposium on Cooperative Database

Systems for Advanced Applications (CODAS ’99),

pages 363–374. Wollongong, Australia, 1999.

[13] G.M. Kapfhammer and M. L. Soffa. A family of test

adequacy criteria for database-driven applications. In

Proceedings of the Joint 9
th
 European Software

Engineering Conference and 11
th
 ACM SIGSOFT

Symposium on the Foundation of Software Engineering

(ESEC 2003 / FSE-11), pages 98–107. ACM Press, New

York, 2003.

[14] R.A. Haraty, N. Mansour, and B. Daou. Regression

testing of database applications. Journal of Database

Management, 13 (2): 31–42, 2002.

[15] R.A. Haraty, N. Mansour, and B. Daou. Regression test

selection for database applications. In volume 3 of

Advanced Topics in Database Research, K. Siau (editor),

pages 141–165. Idea Group, Hershey, Pennsylvania,

2004.

Paper ID: 23051501 2831

