Energy Efficient Multiple Access Scheme for Multi-User MIMO-OFDM System with Improved Gain

P. Venkata Sameera¹, K. Sudha²

¹M.Tech Student, Digital Electronics and Communication Systems, Department of Electronics and Communication Engineering, Sree Vidyanikethan Engineering College (Autonomous), Tirupathi, India
²Assistant Professor, Department of Electronics and Communication Engineering, Sree Vidyanikethan Engineering College (Autonomous), Tirupathi, India

Abstract: In this paper, to improve the energy efficiency (EE) of multi-user multiple-input multiple-output (MIMO) orthogonal frequency-division multiple access (OFDMA) system, an Energy-efficient multiple access (EMA) scheme is proposed. It improves EE by selecting either time-division multiple access (TDMA) or space-division multiple access (SDMA) based on the no. of users or power consumption. Here, we introduced normalization process for power in OFDM system to improve the power gain. Numerical results verify that the EE and power gain can be significantly improved through the proposed EMA scheme.

Keywords: Energy efficiency (EE), channel access method, multiple access method, time-division multiple access (TDMA), space-division multiple access (SDMA), orthogonal frequency-division multiple access (OFDMA).

1. Introduction

A multiple-input multiple-output (MIMO) system consists of multiple antennas at the transmitter and receiver. The energy efficient transmission in MIMO system has been paid increasing attention in recent years because multiple-input multiple-output (MIMO) technology provides extra degrees of freedom and brings multiplexing and diversity gains. As a result, multiuser MIMO (MU-MIMO) transmission has attracted a lot of research interest in the past few decades. In the literature, significant efforts have been dedicated to improve the EE of wireless systems. A modulation strategy is introduced that minimizes the total energy consumption for transmitting a given number of bits in a single input and single output (SISO) AWGN channel [1]. A coordinated power allocation method is developed to balance the weighted SINR in a multi-cell massive multiple input single output (MISO) downlink system [2]. An energy-efficient pilot design in downlink system is studied for a single user (SU) case and the optimal overall transmit power and the power allocation between pilots and data symbols are investigated [3]. In SU communications, the quasiconcavity of EE over an achievable rate is well defined [4], [5], [6] but the trend of the MU communications over the rate is unclear.

In this paper, we study the MU EE of TDMA and SDMA for MU-MIMO orthogonal frequency-division multiple access downlink communications. For a given frequency band, the TDMA supports K users using K TDMA time slots and the SDMA requires less time slots to support the same K users by compromising the power consumption (PC). Because of this, TDMA and SDMA requires different amount of energy. So, EMA scheme is proposed which selects either SDMA or TDMA for each sub-band to maximize the EE. Simple algorithms for the EMA are devised and their EE and power gain performances are verified numerically.

2. System Model

Consider an antenna system with M transmitters and U receivers (users) with N orthogonal frequency sub-bands. Denote a channel matrix of sub-band n by H_n. The channel is assumed to be static for T slots and vary in every T slots independently. Each and every sub-band supports K users where K ≤ T. Throughout the paper, we assume that KN≥U.

The EE of an EMA system is defined as

\[EE = \frac{UR}{cT_nN_nP_{tx}n + \max(L_n)P_{fix}} \]

where R is a fixed target rate with allowing unlimited transmit power and ideal coding and decoding for each user; c represents system inefficiency (c > 1) that is caused by overhead PC at RF circuits; P_{tx,n} is transmit power on sub-band n; P_{fix} is the fixed PC per time slot; L_n is the number of time slots used for transmission on sub-band n; and max/L follows the fact that an RF chain should be turned on if there is at least one time slot to be transmitted over any sub-band.

The first term of the denominator in (1) is a transmit power dependent (TPD) PC term and the second term is a transmit power independent (TDI) PC term. TDMA activates all T time slots which results in the high TPI PC, due to which EE significantly decreases. While the SDMA decrease the number of time slots by increasing the achievable rate for each time slot with higher TPD PC. This observation motivates us to propose an multiple access (MA) selection method between TDMA and SDMA, which is EMA for each sub-band. In the next section, we derive the PC of TDMA and SDMA precisely and propose three suboptimal EMA algorithms.

3. EMA Algorithms

We find EMA algorithm that maximizes the lower bound of EE in (1) and it is realized by minimizing PC per sub-band n defined as
\[PC_n = cR_nL_n + L_nP_{fix} \]

We derive the minimum PC of (2) that achieves R for any user in a TDMA or SDMA mode to determine the MA for each sub-band.

A. PC of TDMA

We first derive the PC of TDMA with OFDMA. To allow the target rate \(R \) of user \(u \) through the sub-band with bandwidth \(\Omega \) and variance \(\sigma^2 \), the power control factor \(p_u \) is lower bounded as

\[p_u \geq \sigma^2 \left(2\frac{R}{\beta - 1}\right) g_u^{-1} \forall e \cup U \]

Where \(g_u \) is the channel matrix

Therefore, the minimum transmit power for achieving \(R \) is derived for the TDMA user \(u \) as

\[P_{\text{TDMA}}^u = g_u \min(p_u) = \sigma^2 \left(2\frac{R}{\beta - 1}\right) \]

Since \(K \) users are supported through \(K \) time slots, the PC in (2) is derived for the TDMA as follows:

\[PC_n^\text{TDMA} = c\sum_{u\in U} P_{\text{TDMA}}^u + K P_{fix} \]

\[= cK \sigma^2 \left(2\frac{R}{\beta - 1}\right) + K P_{fix} \]

B. PC of SDMA

Next, the PC of SDMA with OFDMA is derived. Since the SDMA can be implemented with \(L_n \) time slots (1 \(\leq \) \(L_n \leq T \)), each sub-band supports the \(K \) users with less time slots in fair comparison with TDMA. To allow the target rate \(R \) of user \(u \in U_n \) with \(L_n \) SDMA slots through the bandwidth \(\Omega \), the minimum required transmit power on each sub-band is derived for one SDMA time slot as follows:

\[PC_{\text{SDMA}} = \min[\text{vec}(W_n^H Y_n)]^2 \]

\[= \sigma^2 \left(2\frac{R}{\beta - 1}\right) \|W_n\|^2 \]

where \(\|.\| \) is the Frobenius norm of a matrix and \(W_n \) is the pseudo-inverse of the channel matrix. Since \(L_n \), SDMA time slots are used, the PC in (2) is derived for the SDMA as (1 \(\leq \) \(L_n \leq T \))

\[PC_n^\text{SDMA} = L_n PC_n^\text{SDMA} + L_n P_{fix} \]

\[= cL_n \sigma^2 \left(2\frac{R}{\beta - 1}\right) \|W_n\|^2 + L_n P_{fix} \]

C. EMA Algorithm for each sub-band:

To find the optimal MA for each sub-band \(n \), we need to compare \(PC_n^\text{TDMA} \) and \(PC_n^\text{SDMA} \) in (7), which requires \(O(TN) \) time complexity. For large \(N \), as the complexity is more, we find the optimal number of SDMA slots for each sub-band \(n \), denoted by \(L_n^0 \). This can be obtained by assuming a floating value \(L_n^0 \) instead of \(L_n \) in (7). Now we get a differentiable function over \(L_n^0 \) as

\[f(L_n^0) = cL_n \sigma^2 \left(2\frac{R}{\beta - 1}\right) \|W_n\|^2 + cL_n P_{fix} \]

Now make the first derivative of \(f(L_n^0) \) with respect to \(L_n^0 \) to be zero to find the minimum value of \(L_n^0 \). Thus,

\[L_n^0 = \frac{R c \sigma^2}{c L_n P_{fix} - \left(2\frac{R}{\beta - 1}\right) \|W_n\|^2} \]

Where \(\exp(\cdot) \) is an exponential function and \(W(\cdot) \geq -1 \) denotes the upper branch of Lambert W function, which is given as \(z = W(z) e^{W(z)} \). Finally, we obtain the optimal SDMA slot length \(L_n^0 \) from (9) that is the nearest integer to \(L_n^0 \) and satisfies \(1 \leq L_n^0 \leq T \).

After finding \(L_n^0 \), we compare \(PC_n^\text{TDMA} \) and \(PC_n^\text{SDMA} \) to determine MA on sub-band \(n \). Here, the complexity is reduced to \(O(N) \) as only a pair of comparison is needed for each sub-band.

Now, the EMA algorithm is designed by comparing \(PC_n^\text{TDMA} \) and \(PC_n^\text{SDMA} \) as follows:

\[EMA_n = \begin{cases} \text{SDMA, if } ||W_n||^2 \leq \xi_n \\ \text{TDMA, otherwise} \end{cases} \]

where \(\xi_n = \left(\frac{R}{c L_n P_{fix}}\right) \left(\frac{1}{\left(\frac{R}{\beta - 1}\right) \|W_n\|^2} - 1\right) \left(\frac{R}{\beta - 1}\right) \|W_n\|^2 \)

Since \(\xi_n \) in (11) is a monotonically increasing function over \(R \), while \(||W_n||^2 \) is independent of \(R \), larger \(R \) increases the probability to select SDMA in (10).

To guarantee EE improvement, we further compare the EE of a pure TDMA with EE of the EMA algorithm for each sub-band, and then determine the MA technique that achieves the higher EE.

D. EMA Algorithm for the whole sub-band

In this algorithm, we consider an EMA algorithm that selects either pure TDMA or SDMA for the whole sub-band. This further reduces the complexity. The total PC of SDMA for all sub-bands is defined from (8) as

\[f(\{L_n^0\}) = c \sum_{n \in \Omega} L_n^0 \sigma^2 \left(2\frac{R}{\beta - 1}\right) ||W_n||^2 \max\{L_n^0\} P_{fix} \]

Now make the first derivative of \(f(\{L_n^0\}) \) with respect to \(L_n^0 \) to be zero and find the optimal \(L_n^0 \). The optimal \(L_n^0 \)'s that minimize (12) are identical to one another, i.e., \(L_n^0 = L^0 \). This allows one-dimensional line search from 1 to \(T \) to find \(L^0 \) optimally, which requires \(O(T) \) time complexity.

Firstly, for \(L_n^0 \), we get \(L^0 \) by substituting \(\sum_{n \in \Omega} ||W_n||^2 \) for \(\max\{L_n^0\} \) in (9). Next, we get \(\zeta \) instead of \(\xi_n \) in (11) by replacing \(L_n^0 \) and \(K \) with \(L \) and \(U \), respectively. Finally, we get an EMA algorithm for the whole sub-band from the comparison of \(\sum_{n \in \Omega} ||W_n||^2 \) with \(\zeta \) in (10).

E. Normalized EMA Algorithm:

The general communication system is depicted as
Based on the transmit power S_T and receive power S_R, the channel power gain is defined as S_R / S_T. For a non-ISI channel, using a flat transmit power spectrum, the channel power gain is defined as

$$\frac{S_R}{S_T} = \int_{-\infty}^{\infty} |H(f)|^2 df$$

which is usually normalized to unity.

One should be aware that the channel gain can be greater than unity in frequency ranges near the peak of the frequency response.

When dealing with real channels, it is common to normalize the frequency response so that the maximum value is unity. Thus, we shall also normalize the power frequency to unity. This ensures that the minimum E_b/N_0 is always -1.6 dB. That is, we shall normalize the frequency response such that the -3 dB bandwidth is 1 Hz. We shall call this as peak bandwidth normalization.

For an m-tap channel with unit energy normalization $|H(f)|^2$, the frequency response with peak bandwidth normalization is given as

$$|G(f)|^2 = \frac{1}{M} |H \left(\frac{f}{n} \right)|^2$$

where M is the maximum value of $|H(f)|^2$, and n is the scaling factor which makes the -3 dB bandwidth of $|G(f)|^2$ equal to 1. Normalization by the maximum value ensures the channel maximum power gain is unity. Thus, no particular channel has a gain over another channel in the frequency ranges where the transmit power is concentrated.

4. Numerical Results

We assume that the channel is AWGN with zero mean and unit variance. For the transmit antenna correlation, we apply a correlation matrix with a correlation factor 0.3. A noise variance is defined such that each received antenna achieves 20 dB SNR. The overall bandwidth is 10 MHz. We set the overhead PC parameter as $c = 5.26$.

In Fig. 2, to compare the proposed EMA algorithms with the optimal EMA strategy, we evaluate the EEs for a small-size system with $M = T = 2$ and $N = 4$. As mentioned previously, EMA algorithm for the whole sub-band reduce the complexity of optimal strategy from $O(TN)$ to $O(N)$ and $O(1)$. Based on the results of the small-size system, we surmise that the proposed EMA algorithms work properly for a large-size system without significant performance loss compared to the optimal EMA.

In Fig. 3 and 4, we show the EE of a larger-size system with $M = 30$, $T = 30$, $N = 40$, and $U = 700$. Fig.3 shows EEs over P_{fix} with $R = 1$ Mbps and it shows that SDMA is preferable if the TPI term is dominant. Fig.4 shows that the gain is improved to unity after normalization process.

5. Conclusion

In this paper, we have proposed energy efficiency (EE)-aware multiple access (EMA) scheme. Based on the required power consumption to achieve the fixed feasible target rates, the EMA chooses either a time-division multiple access or spatial-division multiple access (SDMA).
for each sub-band. For the EE-aware SDMA, optimal number of SDMA slots has been derived. It has been shown that the SDMA is most likely selected if i) the target rate is high, ii) the transmit-power-independent power consumption is high, or iii) the channel quality is good. Simple EMA algorithms have been devised and their impact on EE and gain improvement has been verified by simulation. The results have provided valuable insight to extend EE-aware system with the consideration of i) the uncertainty of channel state information and ii) power consumption of uplink communications.

References

Author Profile

P. Venkata Sameera is currently pursuing M.Tech in Digital Electronics and communication systems, in Sree Vidyanikethan Engineering College (Autonomous), Tirupati. Her areas of interest are wireless communication and Digital Signal Processing.

K. Sudhais currently working as an Assistant Professor in ECE department of Sree Vidyanikethan Engineering College (Autonomous), Tirupati. She has completed M.E. in communication systems, in Kumaraguru College of Technology, Coimbatore. Her research areas are Signal Processing, antennas and wave propagation.