Testing Of Cubes- 7 Days

Sr No.	Wt. of cube (KG)	Load (KN)	Strength (MPa)	Av. Strength (Mpa)
1	8.710	960	39.63	
2	8.840	1000	41.35	40.70
3	8.990	980	41.13	

Testing Of Cubes- 7 Days

Sr No.	Wt. of cube (KG)	Load (KN)	Strength (MPa)	Av. Strength (Mpa)
1	8.840	890	42.25	
2	8.715	920	43.68	44.15
3	8.790	980	46.53	

Testing Of Cubes-28 Days

Sr No.	Wt. of cube (KG)	Load (KN)	Strength (MPa)	Av. Strength (Mpa)
1	8.785	1050	44.21	
2	8.807	1130	41.09	42.55
3	8.830	1170	42.36	

Testing of Cubes-28 Days

Sr No.	Wt. of cube (KG)	Load (KN)	Strength (MPa)	Av. Strength (Mpa)
1	8.840	940	44.63	
2	8.715	980	46.53	46.94
3	8.790	1050	49.83	

Table 3.7: Compression test for 2% Natural fiber (BAGASSE)

Material	S.S.D Mix	Mois-ture	Absor-btion	Corrected Mix	<i>Mix for- 0.026M³</i>
	(Kg)	%	%	FOR 1M ³	
W/C	0.37				
Cement	475			475	12.35
Fly ash	0			0	0
Crushed Sand	826	-	3.81	794.53	20.66
10MM AGG	425	-	1.24	419.73	10.91
20MM AGG	643	-	1.24	635.03	16.51
Water	167			211.71	5.5
Admixure	3.6			3.6	0.094
BAGGASS 2%				0.9	0.2375

Table 3.8: Flexure Test for 2% Natural fiber

Material	S.S.D Mix	Mois-ture	Absor-btion	Corrected Mix	<i>Mix for- 0.026M³</i>
	(Kg)	%	%	FOR 1M ³	
W/C	0.37				
Cement	475			475	12.35
Fly ash	0			0	0
Crushed Sand	826	-	3.81	794.53	20.66
10MM AGG	425	-	1.24	419.73	10.91
20MM AGG	643	-	1.24	635.03	16.51
Water	167			211.71	5.5
Admixure	3.6			3.6	0.094
BAGGASS 2%				0.9	0.2375

Testing Of Cubes-28 Days

Sr. No.	Load (KN)	Strength (MPA)
1	32.20	58.37

Testing Of Cubes- 7 Days

Sr. No.	Wt. of cube (KG)	Load (KN)	Strength (MPa)	Av. Strength (Mpa)
1	8.710	850	42.22	
2	8.840	1000	44.44	43.40
3	8.990	980	43.55	

Testing Of Cubes-28 Days

Sr No.	Wt. of cube (KG)	Load (KN)	Strength (MPa)	Av. Strength (Mpa)	
1	8.785	1250	55.55		
2	8.807	1300	57.77	57.77	/
3	8.830	1350	60.0		

4. Result Analysis

4.1 Compressive Strength Analysis of Polypropylene Fiber Reinforced Concrete

4.2 Compressive Strength Analysis of Natural Fiber Reinforced Concrete

 Table 3.9: Flexure test for 2% Polypropylene fiber (PPF)

Material	S.S.D Mix	Mois- ture	Absor- btion	Corrected Mix	Mix for- 0.026M ³
	(Kg)	%	%	FOR 1M ³	
W/C	0.37				
Cement	365			365	12.41
Fly ash	85			85	2.89
Crushed Sand	826	-	0.8	819.39	20.66
10MM AGG	425	-	1.24	419.73	14.27
20MM AGG	643	-	1.24	635.03	21.59
Water	167			187.85	6.4
Admixure	3.6			3.6	0.122
PPF 2%				0.9	0.2375

Testing of Cubes-28 Days

10x

Sr. No.	Load (KN)	Strength (MPA)
1	32.20	59.09

4.3 Flexure Strength Comparison

5. Conclusion

I. Polypropylene Fiber Reinforced Concrete

- 1. We are concluding that the early compressive strength can be achieved by using 0.2% of polypropylene fibers and maximum compressive strength can be achieved by using 2% of polypropylene fibers.
- 2. We are concluding that the both early flexural strength and maximum flexural strength can be achieved by using 2% of polypropylene fibers.

II. Natural Fiber Reinforced Concrete

1. W may conclude that the early compressive strength and flexural strength can be achieved by using 2% of steel fibers.

2. Strength of natural fiber reinforced concrete decreases if volume fraction of fibres is increased beyond 2%.

III. Economy Considerations

- 1.We may conclude that cost of concrete mix is increased by 10% using 2% natural fibers and by 1% using 0.4% polypropylene fibers.
- 2.Use of PPF could be advised over natural fibres in the applications where tensile and flexural properties of concrete are focused
- 3. Use of natural fibers is recommended for light structures or where tensile n flexure strength is not more important.

6. Future Scope & Limitations

- 1. We can use combination of two or more fibers to improve various mechanical properties of concrete.
- 2. Natural fibers which we have used here that is sugarcane waste (bagasse) is a waste product causing pollution to the nearby society so we can use that waste as fiber and we can control the pollution and can use it in construction industry in efficient way.
- 3. We can minimize the disposal problem of sugarcane waste.

References

- F. F. Wafa '(1990), "Properties and applications of fiber reinforced concrete", JKAU: eng. sci., Vol. 2, pp. 49-63.
- [2] Jain D. and Kothari (2011), "Hair Fiber Reinforced Concrete", Research Journal of Recent Sciences ISSN 2277 - 2502 Vol. 1, fip. 128-133
- [3] Balaguru P and Najm H (2004), "High-performance fiber reinforced concrete mixture proportion with high fiber volume fractions" Material Journal, volume 101, issue 4, July 1, 2004 pg.281-286.
- [4] References from Books: M. S. Shetty "Concrete Technology"- S. Chand Publication House 2008
- [5] References from Books:M. L Gambhir- "Concrete Technology"- Tata McGraw Hill book, New York

2319