The Exquisite Integer Additive Set-Labelling of Graphs

N. K. Sudev\(^1\), K. A. Germina\(^2\)

\(^1\)Department of Mathematics, Vidya Academy of Science & Technology, Thalakkottukara, Thrissur - 680501, Kerala, India.
\(^2\)Research & PG Department of Mathematics, Mary Matha Arts & Science College, Mananthavady, Wayanad - 670645, Kerala, India.

Abstract: Let \(\mathbb{N}_0\) denote the set of all non-negative integers and \(\mathcal{P}(\mathbb{N}_0)\) be its power set. An integer additive set-indexer (IASI) of a graph \(G\) is an injective function \(f: V(G) \to \mathcal{P}(\mathbb{N}_0)\) such that the induced function \(f^+: E(G) \to \mathcal{P}(\mathbb{N}_0)\) defined by \(f^+ (uv) = f(u) + f(v)\) is also injective, where \(f(u) + f(v)\) is the sum set of \(f(u)\) and \(f(v)\). If \(f^+(uv) = k\) for all \(u, v \in E(G)\), then \(f\) is said to be a \(k\)-uniform integer additive set-indexer. In this paper, we study the admissibility of a particular type of integer additive set-indexers by certain graph operations.

Keywords: Integer additive set-labeling, integer additive set-indexers, weak integer additive set-labeling, strong integer additive set-labeling, exquisite integer additive set-labeling.

Mathematics Subject Classification: 05C78

1. Introduction

For all terms and definitions, not defined specifically in this paper, we refer to [3] and [8] and for different graph classes, we further refer to [4] and [5]. Unless mentioned otherwise, all graphs considered here are simple, finite and have no isolated vertices.

The sum set of two non-empty sets \(A\) and \(B\), denoted by \(A + B\), is defined as \(A + B = \{a + b : a \in A, b \in B\}\). If either \(A\) or \(B\) is countably infinite, then their sum set \(A + B\) is also countably infinite. Hence, all sets we mention here are finite. Using the concepts of sum sets, an integer additive set-indexing numbers are of special interest. Hence, we have introduced the following notions.

Definition 1.1. [6] Let \(\mathbb{N}_0\) denote the set of all non-negative integers and \(\mathcal{P}(\mathbb{N}_0)\) be its power set. An integer additive set-labeling (IASL, in short) of a graph \(G\) is defined as an injective function \(f: V(G) \to \mathcal{P}(\mathbb{N}_0)\) which induces an integer additive set-indexing \(f^+: E(G) \to \mathcal{P}(\mathbb{N}_0)\) such that \(f^+ (uv) = f(u) + f(v)\), \(uv \in E(G)\). A Graph which admits an IASL is called an integer additive set-labeled graph (IASL-graph).

The notion of an integer additive set-indexers of graphs was introduced in [6].

Definition 1.2. [6] An integer additive set-labeling \(f: V(G) \to \mathcal{P}(\mathbb{N}_0)\) of a graph \(G\) is said to be an integer additive set-indexer (IASI) if the induced function \(f^+: E(G) \to \mathcal{P}(\mathbb{N}_0)\) defined by \(f^+ (uv) = f(u) + f(v)\) is also injective. A Graph which admits an IASI is called an integer additive set-indexed graph (IASI-graph).

An IASL (or IASI) is said to be \(k\)-uniform if \(|f^+(e)| = k\) for all \(e \in E(G)\). That is, a connected graph \(G\) is said to have a \(k\)-uniform IASL (or IASI) if all of its edges have the same set-indexing number \(k\).

The existence of an integer additive set-labeling (or integer additive set-indexers) by given graph operations and graph products was established in [14].

Theorem 1.3. [12] Every graph \(G\) admits an integer additive set-labeling (integer additive set-indexer).

The number of elements in the set-label of an element of a graph \(G\) is called the set-indexing number of that element.

Every graph admits an integer additive set-labeling (IASL-graph) of a given graph by certain graph operations and graph products was established in [14].

Definition 1.4. [7] A weak integer additive set-indexing (WIASL) of a graph \(G\) is an IASL \(f\) such that \(|f^+(uv)|\) is maximum \(|f(u)|, |f(v)|\) for all \(u, v \in V(G)\).

Lemma 1.5. [7] Let \(f\) be an IASL defined on a given graph \(G\). Then, \(f\) is a WIASL of \(G\) if and only if at least one end vertex of every edge of \(G\) is mono-indexed.

Definition 1.6. [13] A strong integer additive set-indexing (SIASL) of \(G\) is an IASL \(f\) such that \(|f^+(uv)| = |f(u)|, |f(v)|\) for all \(u, v \in V(G)\).

The difference set of a set \(A\) is the set of all positive differences between the elements of \(A\). The difference set of a set \(A\) is denoted by \(D_A\).

The following result is a necessary and sufficient condition for an IASL (or IASI) to be a SIASL (or SIASI) of a given graph \(G\).
Lemma 1.7. [13] Let \(f \) be an IASL defined on a given graph \(G \). Then, \(f \) is a SIASL of \(G \) if and only if the difference sets of any two adjacent vertices of \(G \) are disjoint.

In this paper, we study the characteristic of graphs which admit a certain type of Integer additive set-labeling.

2. New Results

First, we introduce the notion of an exquisite integer additive set-labeling as follows.

Definition 2.1. Let \(\mathbb{N}_0 \) denote the set of all non-negative integers and \(\mathcal{P}(\mathbb{N}_0) \) be its power set. An exquisite integer additive set-labeling (EIASL, in short) is defined as an integer additive set-labeling \(f: V(G) \to \mathcal{P}(\mathbb{N}_0) \) with the induced function \(f^+: E(G) \to \mathcal{P}(\mathbb{N}_0) \) which is defined by \(f^+(uv) = f(u) + f(v) \), \(u, v \in V(G) \), such that \(f(u), f(v) \subseteq f^+(uv) \) for all adjacent vertices \(u, v \in V(G) \). A Graph which admits an exquisite integer additive set-labeling is called an **exquisite integer additive set-labeled graph** (EIASL-graph).

An exquisite IASL is called a **weakly exquisite IASL** (WEIASL, in short) if it is a weak IASL and is called a **strongly exquisite IASL** (SEIASL, in short) if it is a strong IASL.

The following theorem is a necessary and sufficient condition for an IASL of a graph \(G \) to be an EIASL of \(G \).

Theorem 2.2. Let \(f \) be an IASL of a given graph \(G \). Then, \(f \) is an EIASL of \(G \) if and only if \(0 \) is an element in the set-label of every vertex in \(G \).

Proof. Let \(f \) be an EIASL of \(G \). Then, for two adjacent vertices \(u, v \in G \), we have \(f(u), f(v) \subseteq f^+(uv) \) \(\forall u, v \in V(G) \). If \(0 \) is contained neither in \(f(u) \) nor in \(f(v) \), then some of the smaller element in both the sets will not be in \(f^+(uv) \). Hence, assume that exactly one of these two sets, say \(f(u) \), contains the element \(0 \). Then, \(0 \neq x = x, \forall x \in f^+(uv) \). Hence, \(0 \) in \(f(v) \) can not be an element of \(f^+(uv) \). In both cases, we get a contradiction to the fact that \(f(u), f(v) \subseteq f^+(uv) \). Hence, both \(f(u) \) and \(f(v) \) must contain the element \(0 \).

Conversely, assume that \(0 \) is an element in the set-label of every vertex in \(G \), under \(f \). Then, for every element \(x \in f(u) \), \(x = x + 0 \) and hence belongs to \(f(u) + f(v) = f^+(uv) \). That is, \(f(u) \subseteq f^+(uv) \). In a similar manner, we can also have \(f(v) \subseteq f^+(uv) \). Therefore, \(f \) is an EIASL of \(G \). \(\Box \)

The following theorem establishes a necessary and sufficient condition for a graph \(G \) to admit weakly EIASL.

Theorem 2.3. A graph \(G \) admits a weakly exquisite integer additive set-labeling if and only if it is a star.

Proof. Assume that \(G \) admits an WIASL, say \(f \). Then, since \(f \) is a WIASL by Lemma 5, at least one end vertex of every edge of \(G \) is mono-indexed. Since \(f \) is also an EIASL of \(G \), then by Theorem 2.0 must be an element of the set-label of every vertex of \(G \). Hence, \(\{0\} \) will be the set-label of one end vertex of every edge of \(G \). Since, \(f \) is injective, this is possible only when the end vertex of every edge is unique. That is \(G \) is a star graph.

Conversely, assume that \(G \) is a star graph \(K_{1,n} \). Let \(v \) the vertex common to all edges in \(G \). Label this vertex by the set \(\{0\} \) and label all other vertices by distinct non-singleton sets of non-negative integers. Then, this set-labeling is clearly an EIASL of \(G \).

A necessary and sufficient condition for a graph \(G \) to admit a SEIASL is established in the following theorem.

Theorem 2.4. A graph \(G \) admits a strongly exquisite integer additive set-labeling if and only if \(\mathcal{D}_f \cap \mathcal{D}_f = \emptyset \) and \(f(u) \cap f(v) = \{0\} \), for any two adjacent vertices \(u \) and \(v \) in \(G \).

Proof. Let \(G \) admits an SEIASL, say \(f \) and let \(u, v \) be any two adjacent vertices in \(G \). Since \(f \) is an IASI, by Lemma 7, the difference sets of the set-labels of adjacent vertices are disjoint. That is, \(\mathcal{D}_f(u) \) and \(\mathcal{D}_f(v) \) are disjoint sets. Since \(f \) is an EIASL, by Theorem 2, the set-label of every vertex must contain the element 0. Therefore, 0 is a common element of both \(f(u) \) and \(f(v) \). If \(f(u) \) and \(f(v) \) contains one common element, say \(x \), other than 0, then the difference \(x = 0 \) belongs to both \(\mathcal{D}_f(u) \) and \(\mathcal{D}_f(v) \), contradicting the fact that \(f \) is a strong IASI. Therefore, \(f(u) \cap f(v) = \{0\} \).

Conversely, assume that \(\mathcal{D}_f(u) \cap \mathcal{D}_f(v) = \emptyset \) and \(f(u) \cap f(v) = \{0\} \), for any two adjacent vertices \(u \) and \(v \) in \(G \). Since \(\mathcal{D}_f(u) \) and \(\mathcal{D}_f(v) \) for any edge \(uv \) in \(G \), \(f \) is a strong IASL of \(G \). Since \(f(u) \cap f(v) = \{0\} \), we have \(\{0\} \in f(u) \lor f(v) \lor v \in V(G) \). Therefore, \(f(u) = f(u) + \{0\} \subseteq f(u) + f(v) \). In a similar way, we can prove that \(f(v) \subseteq f(u) + f(v) \). Hence, \(f \) is an EIASL of \(G \). Therefore, \(f \) is an SEIASL.

3. Operations and Products of EIASL-graphs

Let us first have the following proposition.

Proposition 3.1. If \(G \) is an EIASL-graph, then any non-trivial subgraph of \(G \) also admits an (induced) EIASL.

Proof of the above theorem follows from the fact that if \(f \) is an EIASL defined on a graph \(G \), then for a subgraph \(H \) of \(G \), the restriction function \(f|_H \) will be an induced EIASL on \(H \). The following theorem establishes the admissibility of an EIASL by the union of two EIASL-graphs.

Proposition 3.2. The union of two EIASL-graphs \(G_1 \) and \(G_2 \) admits an EIASL if and only if both \(G_1 \) and \(G_2 \) are EIASL-graphs.

Proof. Let \(f_1 \) and \(f_2 \) be the EIASLs of the given graphs \(G_1 \) and \(G_2 \) respectively. Then, the function \(f \) defined on \(G_1 \cup G_2 \) by
The result follows by Proposition 1. Conversely, assume that the graph $G = G_1 + G_2$ admits an EIASL, say f. Since both G_1 and G_2 are subgraphs of G, then by Proposition 1, both G_1 and G_2 admit the induced EIASLs $f|_{G_1}$ and $f|_{G_2}$ respectively.

For two given graphs G_1 and G_2, the join $G_1 + G_2$ is the graph obtained by every vertex of G_1 to all vertices of G_2. That is, $G_1 + G_2 = G_1 \cup G_2 \cup \{E_{ij} \mid E_{ij} \in E(G_1 \times G_2), v_i \in V(G_1), v_j \in V(G_2)\}$.

Theorem 3.3. The join of two EIASL-graphs is an EIASL graph if and only if both G_1 and G_2 admit some EIASLs.

Proof. Let G_1 and G_2 be two EIASL-graphs whose vertex set are respectively $V(G_1) = \{u_1, u_2, u_3, \ldots, u_n\}$ and $V(G_2) = \{v_1, v_2, v_3, \ldots, v_m\}$. Let f_1 and f_2 be the EIASLs of the given graphs G_1 and G_2 respectively. Then, for $1 \leq i \leq n$, $1 \leq j \leq m$, define a function f on $G_1 \cup G_2$ by

$$f(v) = \begin{cases} f_1(u) & \text{if } v = u_1, u_2, u_3, \ldots, u_n \\ f_2(v) & \text{if } v = v_1, v_2, v_3, \ldots, v_m \end{cases}$$

Then, for any edge e in $G_1 + G_2$, we have

$$f^+(e) = \begin{cases} f_1(u_1) + f_1(u_2) & \text{if } e = u_1u_2 \\ f_2(v_1) + f_2(v_2) & \text{if } e = v_1v_2 \end{cases}$$

Since f_1 and f_2 are EIASLs, 0 is an element of $f_1(u_1)$ and $f_2(v_1)$ for all $1 \leq i \leq n$ and $1 \leq j \leq m$. Hence $f_1(u_1), f_2(v_1) \subseteq f(u_1) + f(v_1)$. Hence f is an EIASL of $G_1 + G_2$.

For the converse, assume that the graph $G = G_1 \cup G_2$ admits an EIASL. Then, since both G_1 and G_2 are subgraphs of G, the result follows by Proposition 1.

Next, let us verify whether the products of EIASL graphs admit (induced) EIASLs. The following theorem establishes the admissibility of an EIASL by the Cartesian product of two EIASL graphs.

Theorem 3.4. The Cartesian product two graphs G_1 and G_2 admits an EIASL if and only if both G_1 and G_2 are EIASL-graphs.

Proof. Let $V(G_1) = \{u_1, u_2, \ldots, u_n\}$ and $V(G_2) = \{v_1, v_2, \ldots, v_m\}$ and let f_1 and f_2 be the EIASLs of G_1 and G_2 respectively. Let $G = G_1 \Box G_2$. Denote the vertex (u_i, v_j) of $G_1 \Box G_2$ by w_{ij}. Define a function $f: V(G) \rightarrow \mathcal{P}(N_n)$ by $f(w_{ij}) = f_1(u_i) + f_2(v_j)$. Since f_1 and f_2 are EIASLs, all set-label $f(w_{ij})$ in G contain the element 0. Hence, by Theorem 2, f is an EIASL of G.

To prove the converse part, assume that $G = G_1 \Box G_2$ admits an EIASL, say f. Clearly, G has n copies of G_1 (and l copies of G_2). Let G_{1i} be any one of these copies of G_1. Clearly, G_{1i} is an isomorphic graph of G_1 and is a subgraph of G. Then, Proposition 1, f induces an EIASL to the graph G_{1i}. Since G_1 is isomorphic to G_{1i}, the set-labeling of G_{1i}, for any $1 \leq i \leq n$, will be an EIASL for G_1 also. Similarly, we can find an EIASL for G_2 also. This completes the proof.

Using the same argument, we can establish the existence of induced IASIs for the following graph products.

Theorem 3.5. The strong product two graphs G_1 and G_2 admits an EIASL if and only if both G_1 and G_2 are EIASL-graphs.

Another graph product we need to consider in this context is the corona of two graphs. The corona of two graphs G_1 and G_2, denoted by $G_1 \odot G_2$, is the graph obtained by taking $|V(G_1)|$ copies of G_2 and joining all vertex of i-th copy of G_2 to the i-th vertex of G_1, for all $1 \leq i \leq |V(G_1)|$.

Theorem 3.6. The corona two graphs G_1 and G_2 admits an EIASL if and only if both G_1 and G_2 are EIASL-graphs.

Proof. Let f, g be the EIASLs defined on G_1 and G_2 respectively. Let G_2 be the i-th copy of G_2. Let G_{1i} be the set-label of G_{1i}, where $g_{1i}(v_j) = \{k \mid k \in g_{1i}(v_j)\}$, where v_j is the j-vertex in the i-th copy of G_2. For all $v \in V(G_2)$, $g(v)$ contains 0, all $g_{1i}(v_j)$ also contain 0. Now define the function $h: V(G_1 \odot G_2) \rightarrow \mathcal{P}(N_n)$ by

$$h(v) = \begin{cases} f(v) & \text{if } v \in V(G_1) \\ g(v) & \text{if } v \in V(G_2) \end{cases}$$

Clearly, every vertex in $G_1 \odot G_2$ contains the element 0. Then, by theorem 2, h is an EIASL of G.

Conversely, let $G_1 \odot G_2$ be an EIASL-graph. Since G_1 is a subgraph of $G_2 \odot G_2$, G_1 admits an induced EIASL. Since G_2 is isomorphic to each copy of G_2, label the vertices of G_2 by the same set-labels of the corresponding vertices of any one copy of G_2, which will be an EIASL for G_2 also. This completes the proof.

In the similar way, we can verify the existence of an induced EIASL for the rooted product of two EIASL-graphs.

Theorem 3.7. Let G_1 be a graph and G_2 be a rooted graph. Then, their rooted product $G_1 \circ G_2$ is an EIASL graph if both G_1 and G_2 admit some EIASLs.

Proof. Let v_1 ve the root of G_2. Take $|V(G_1)|$ copies of G_2 and identify the root of i-th copy of G_2 to the i-th vertex of G_1 for all $1 \leq i \leq |V(G_1)|$. Label the vertices other than the roots of each copy of G_2 as explained in 6 and preserve the labeling of G_1 for the corresponding vertices in $G_1 \circ G_2$. Then, this set-labeling is an EIASL of $G_1 \circ G_2$.

The converse part is similar to that of 6. This completes the proof.
4. Associated Graphs of EIASL-Graphs

Since the set-labels of all vertices of an EIASL graph contains the element 0, the set-labels of all edges of G will also contain 0. As a result, we immediately have the following results.

Proposition 4.1. If a graph G admits an EIASI, say f, then its line graph $L(G)$ and total graph $T(G)$ admit an EIASL, induced by f.

Proof. Let G be a graph on n vertices and m edges with $V(G) = \{v_1, v_2, v_3, ..., v_n\}$. Also, let f be an EIASI defined on G.

Every edge of G corresponds to a vertex in $L(G)$. Then, let $V((L(G)) = \{u_1, u_2, u_3, ..., u_m\}$. Define a function $g:V(L(G)) \rightarrow \mathcal{P}(\mathbb{N}_0)$, by $g(u_r) = f^+(u, v_j)$ if the vertex u_r in $L(G)$ corresponds to the edge in v_i, v_j in G, where $1 \leq r \leq m$ and $1 \leq i, j \leq n$. Since, f is an EIASI, f^+ is injective and hence g is also an injective function. Since, for every edge $e \in E(G)$, the set $f^+(e)$ contains the element 0, by Theorem 2, g is an EIASL of $L(G)$. □

Proposition 4.2. If a graph G admits an EIASI, say f, then its total graph $T(G)$ admits an EIASL, which is induced by f.

Proof. Let G be a graph on n vertices and m edges with $V(G) = \{v_1, v_2, v_3, ..., v_n\}$. Also, let f be an EIASI defined on G.

Every element (vertices and edges) of G corresponds to a vertex in its total graph $T(G)$. Hence, $V(T(G))$ contains $m + n$ elements. Let $V(T(G)) = \{u_1, u_2, u_3, ..., u_l\}$, where $l = m + n$. Hence, Define a function $g:V(T(G)) \rightarrow \mathcal{P}(\mathbb{N}_0)$ by $g(u_r) = \{f(v_i) \text{ if } u_r \sim v_i \in G\}$

Since, for every $v \in V(G)$ and $e \in E(G)$, the sets $f(v)$ and $f^+(e)$ contain the element 0, by Theorem 2, g is an EIASL of $T(G)$. □

In a similar way, we can prove the following results for certain other associated graphs of given EIASL graphs.

Proposition 4.3. If G is an EIASI graph, then its subdivision graphs are also EIASL-graphs.

Proof. Let an edge $e = uv$ of G be subdivided by introducing a new vertex, say w. Then, the edge uw will be replaced by two edges uw and uw. Repeat this process on every edge of G and denote the resultant graph by H. Define a function $g:V(H) \rightarrow \mathcal{P}(\mathbb{N}_0)$ which preserves the same set-labeling for the vertices common in G and H and assign the same set-labels of the deleted edges to the corresponding newly introduced vertices. Since f and f^+ are injective in G, g is also injective. More over, all set-labels in G contains the element 0, the set-labels in H also contain 0. Therefore, by Theorem 2, g is an EIASL of H. □

In the similar manner, we can prove the following results also.

Proposition 4.4. A graph obtained by contracting some edges of an EIASL-graph also admits an EIASL.

Proof. Let f be an EIASL defined on G. Then, the set-labels of all elements of G contain 0. If u and v be two adjacent vertices in G, let G' be the graph obtained by removing the edge uv and identifying the vertices u and v to form a single vertex, say w. Label the new vertex w by the same set-label of the deleted edge uv and label all other vertices of G' the same set-labels of the corresponding vertices of G. Since the set-label of uv in G also contains 0, the set-labels of all vertices in G' also contain 0. Therefore, by Theorem 2, G' admits an EIASL. □

Proposition 4.5. A graph that is homeomorphic to an EIASL-graph also admits an EIASL.

Proof. Let f be an EIASL defined on G. Let v be a vertex of G having degree 2 and is not in any triangle in G. Let u, w be the two vertices adjacent to v in G. Then u and w are non-adjacent vertices. Now, let $H = (G - v) \cup \{uw\}$. Hence, H is a graph homeomorphic to G. Since $V(H) \subseteq V(G)$, the set-labels of all vertices of H, induced by the EIASL f of G, contains the element 0. Therefore, $f|_H$ is an EIASL of H. □

5. EIASLs of Graphs with Finite Ground Sets

In this section, we discuss the existence of EIASLs for given graphs with respect to a finite ground set $X \subseteq \mathbb{N}_0$ instead of the whole countably infinite set \mathbb{N}_0. In this type, EIASLs, the elements of G have distinct subsets of X as their set-labels.

The cardinality of the set-labels and the cardinality of the finite ground set X are of the special interest. The set-indexing number of a graph G is the minimum cardinality of the set X which induces a set-labeling for G. The set-indexing number of a graph G is denoted by $\sigma(G)$.

Let us now proceed to discuss the characteristics of graphs which admit EIASLs with respect to a finite ground set X. The first question we are going to check here is whether the ground set X itself can be a set-label of a vertex of G under an EIASL f.

Proposition 5.1. Let f be an EIASL defined on a graph G. Then, the ground set X is the set-label of a vertex v of G if v is a pendant vertex, whose adjacent vertex has the set-label $\{0\}$.

Proof. Note that $\{0\} \subseteq X$ and for any integer $x > 0$, $X \ni \{x\} + X$. Hence, v can be adjacent only to a vertex, say u, which has a set-label $\{0\}$. Therefore, v is a pendant vertex. □

The following result is about the lower bound for the set-indexing number of a graph G.

Theorem 5.2. Let G be a graph on n vertices. Then, the minimum value of $\sigma(G)$ is $1 + \log_2 n$.

Proof. Let G be a graph which admits an EIASL, say f. Then, by Theorem 2, 0 must be an element in the set-labels of all vertices of G. That is X must have at least n subsets
containing the element 0. That is, \(n \leq 2^{|X|-1} \). Hence, the lower bound for \(\sigma(G) \) is \(1 + \log_2 n \).

Theorem 5.3. Let \(f \) be an EIASL defined on a given graph \(G \) with respect to a finite ground set \(X \). Then, if \(V(G) \) is \(l \)-uniformly set-indexed, then \(n \leq \left(\frac{|X|-1}{l-1} \right) \).

Proof. Let \(G \) be a graph on \(n \) vertices, which admits an EIASL, say \(f \), with respect to a finite set \(X \). For a positive integer \(l \), let \(V(G) \) is \(l \)-uniformly set-indexed. Then, by Theorem 2, \(X \) must have at least \(n \) subsets containing \(l \) elements, all of which contain 0. The number of \(l \)-element subsets of \(X \) containing 0 is \(\left(\frac{|X|-1}{l-1} \right) \). Therefore, \(n \leq \left(\frac{|X|-1}{l-1} \right) \).

6. Conclusion

In this paper, we have discussed the existence of exquisite integer additive set-labeling for given graphs and certain graphs associated with the given EIASL-graphs. We have also discussed the existence of finding exquisite IASL for the operations and products of two graphs. Some problems in this area are still open. Some of the most promising problems in this area are the following.

Problem 1. Determine conditions for an arithmetic IASI of a given graph \(G \) to be an EIASL of \(G \).

Problem 2. Determine conditions for the direct product, lexicographic product and certain other graph products of EIASL graphs to admit EIASLS.

Problem 3. Determine the set-indexing number of a graph \(G \) so that it admits WEIASI and SEIASI, both uniform and non-uniform.

More properties and characteristics of this type IASL, both uniform and non-uniform, are yet to be investigated. The problems of establishing the necessary and sufficient conditions for various graphs and graph classes to have certain other types IASLs are still open. Studies about those IASLs which assign sets having specific properties; to the elements of a given graph are also noteworthy. All these facts highlight a wide scope for further studies in this area.

References

Author Profile

N. K. Sudev presently works as an Associate Professor in the Dept. of Mathematics, Vidya Academy of Science and Technology, Thrissur, Kerala, India. He has 12 years of teaching experience and three years of research experience. He has 25 research papers published or accepted in reputed National and International Journals. He is now pursuing his doctoral degree in Kannur University, Kannur, Kerala, India.

Dr. (Sr.) K. A. Germina Presently works as the Head of the PG and Research Department of Mathematics, Mary Matha Arts and Science College, Mananthavady, Kerala, India. She has more than 25 years of teaching experience and more than 15 years of research experience. She has more than hundred research publications in reputed national and international journals. She is also the editor of many reputed international journals. 12 candidates have already taken their doctoral degree under her guidance.