
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Enhancing the Hadoop Performance through Data

Placement in Heterogeneous Hadoop Cluster

A Ankita Poovaiah
1
, Gopal B

2

1M.Tech Student, Department of CSE, Mangalore Institute of Technology and Engineering, Mangalore, Karnataka, India

2Assistant Professor, Department of CSE, Mangalore Institute of Technology and Engineering, Mangalore, Karnataka, India

Abstract: In the present world large volumes of data are getting generated and these records and data details have to be maintained for

future purpose. Keeping these large bulks of data and using them becomes difficult. To overcome this and make it easy to store, use and

work with it a tool called Hadoop is used. Hadoop uses the concept of a cluster that is many small nodes together form a cluster. Nodes

with varying configurations (like varying RAM sizes, processors) form a heterogeneous cluster. Data placement technique in

heterogeneous cluster is complicated. The data placement technique in heterogeneous cluster helps in the efficient use of resources and

when combined with the MapReduce programming model increases the performance. Data placement can be done by forming racks. In

this work we enhance the performance of Hadoop in heterogeneous cluster by first creating racks for data placement and then

modifying certain parameters of Hadoop tool. The techniques are implemented and evaluated in Hadoop 1.0.3.

Keywords: Big Data, Hadoop, Heterogeneous Cluster, Data Placement.

1. Introduction

Big data is a combination of volume, variety and velocity.

Big data is generated mainly due to the high usage of social

networks, Internet. It creates huge volumes of data which

can go up to petabytes and terabytes. It has a variety of data

that can be of the form structured, unstructured or semi

structured. Hadoop is a tool used to manage this big data so

that the data can be used and handled in a very efficient and

easy way. Hadoop is an open source tool and it mainly uses

a MapReduce programming model which uses JAVA.

Hadoop works well in homogeneous clusters where all the

nodes have the same configurations. In homogeneous

clusters Hadoop splits the input data into equal size or data

blocks (by default 64MB) on the Hadoop distributed file

system (HDFS) across all the nodes present in the cluster

[1]. In a heterogeneous cluster the nodes will have different

configurations like varying RAM sizes, processors. Data

placement technique when applied in a heterogeneous

cluster helps to efficiently utilize the available resources.

Data placement in a heterogeneous cluster can be done by

creating racks. These racks are created based on the nodes

internet protocol addresses. The Hadoop performance can be

boosted by modifying the parameters which are present in

the configuration file of Hadoop. MapReduce is a flexible

data processing tool used in Hadoop and it works in two

phases that is map and reduce phase [2]. The paper is

organized in the following sections. Section II gives the

related work and section III provides the proposed

enhancements. In section IV and V experimentation results

are provided along with the conclusion respectively.

2. Related Work

Many research works are conducted on data placement and

enhancement of Hadoop tool. This segment lists various

related work towards the performance enhancement in

Hadoop.

Jiong Xie et.al. [3] provide the data placement in

heterogeneous cluster where initially the same task is

assigned to all the nodes and it provides the response time.

Based on this response time the computing ratio is assigned

to the nodes and these computing ratios define the data to be

placed and tasks to be allotted to the nodes. The data

placement varies for every application. This works well only

for a particular application.

Madhavi Vaidya [4] in parallel processing of cluster by

MapReduce states that MapReduce library automatically

parallelizes the computation. It even handles issues like fault

tolerance, data distribution and load balancing. It aims to

provide the overview of a MapReduce programming model

and its applications. The scalability of MapReduce is proven

to be very high because a job in MapReduce model is

partitioned into numerous small tasks running on multiple

machines in a large scale cluster. The data locality issue in

heterogeneous environments can reduce the MapReduce

performance when it is run on multiple nodes.

B.ThirumalaRao et.al. [5] states in performance issues of

heterogeneous Hadoop clusters in cloud computing how

large volumes of data can be stored in a reliable and

inexpensive way. It also uses a new tool to analyze the

structured and the unstructured data. It describes the

hardware parameters that affect the Hadoop performance. It

provides the performance challenges of Hadoop in

heterogeneous clusters.

3. Proposed Enhancements

We propose the techniques for enhancing the Hadoop

performance in heterogeneous cluster. Initially the Hadoop

cluster is set up by considering the nodes with varying

configurations like different Random access memory sizes

and processors (like dual core or quad core processors). The

cluster has a master node and can have any number of slave

nodes. After the cluster is set up the administrators have to

know the configurations of each master and its slave nodes.

Paper ID: SUB153885 3150

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3.1 Data Placement and Distribution

After the multi node cluster is set up [6] and a Hadoop file is

created the following process has to be done. The IP

addresses of all the slave nodes have to be maintained along

with the configurations. Here, the data assignment will be

done manually by creating racks. Initially, a topology script

has to be created in the Hadoop’s conf file, this helps to

determine the rack location of the nodes. In the topology

script file the Hadoop path has to be set and this script must

be executable. For this topology script to get the rack details

another data file has to be created in the same path and in

this data file the IP addresses of the slave nodes have to be

added. It should be added according to the way the

administrator wants the data to be stored in the nodes. A

better performing node like (larger RAM size or better

processing node) can be given the first location and the

others accordingly. The data gets stored accordingly in the

particular racks. So, better performance racks are provided

with more data and so on.

After this the number of requests can also be done manually

for each node by providing the value in the core site of

Hadoop. By default it will be hundred requests but this can

be increased or decreased based on the nodes computing

capacity. Then, the HDFS and MapReduce have to be

restarted. This is how the data placement and data

distribution will be done manually in heterogeneous clusters.

This helps in the better utilization of the available resources

clusters. This helps in the better utilization of the available

resources.

3.2 Performance Enhancements

The performance of Hadoop can be enhanced using the

following three techniques. That is increasing the number of

mapper and reducer slots, reusing the JVM and increasing

the IO sort buffer and factor[7].When these techniques are

used individually performance can be improved. These

techniques are combined with each other and then

performance is measured. It is seen that the performance

enhancement is high when the approaches are used in a

combined manner rather than an individual approach.

a) Increasing the number of mapper and reducer slots

The Hadoop path will have a conf file present in it. In that

conf file when listing of contents is done an xml file called

mapred-site will be present. In this mapred-site file there

will be two factors present. The first factor is mapred.

tasktracker.map. tasks. maximum and the second is

mapred.tasktracker.reduce.tasks.maximum. These

constraints can be calculated using the following formulas.

Maximum number of = (CPU cores – 1 reserved core for

mapper slots Hadoop daemon) * x

In the above equation x is the value for the hyper threading

factor. If the hyper threading factor is deactivated then the

value of x is 0.95 and if it is activated the value of x

becomes 1.75. Then once the number of mapper slots is

calculated the cluster capacity is computed using the

following formula:

Cluster mapper = Maximum number of mapper slots *

number capacity of nodes

Similarly, for the next parameter the following formulas are

used:

Maximum number of = (CPU cores – 1 reserved core) * x

reducer slots

Here again x determines the hyper threading factor. If

enabled then 1.75 and if disabled then multiply by 0.95.

Then the cluster reducer capability is computed as follows:

Cluster reducer = Maximum number of reducer slots *

capacity number of nodes

The above calculated values are then provided to the

Hadoop’s conf file using the property and its values in the

mentioned parameters. This can be executed for a normal

word count program. To get better performance results,

inputs of varying sizes can be given.

b) Reusing the Java Virtual Machine (JVM)

Reusing is a technique for minimizing sources such as CPU,

memory space. When we deal with loads of data records, it

is always cheaper to reuse an existing instance rather than

creating a new one. By default Hadoop creates a new JVM

to run the map or reduce task. The Hadoop’s path

configuration file is used again and the parameter

mapred.job.reuse.jvm.num.tasksis modified. When this

factor is allowed by setting a value multiple tasks can be

executed sequentially with one JVM. Change this variable to

run the desired number of tasks. For instance, if the value is

fixed to 2 then it runs two tasks with single JVM. If the

value is fixed as -1, the jobs that the JVM can execute are

boundless. This technique can be implemented for any

application and performance can be measured.

c) Increasing the Sort Buffer Size and Sort Factor

Every job when executed writes the output to the buffer.

Once the buffer reaches the threshold value the tasks start

writing the output to the disks. Maximizing the buffer size

minimizes the spills to the disk. This helps to decrease the

IO time on both mappers as well as reducer sides. The

constraints are agreed for the value in the Hadoop path’s

conf file. In this, an xml file will be present called as

mapred-site. The two parameters used here are io.sort.mb

and io.sort.factor can be increased so that more memory is

allocated to the merging and sorting processes. If the allotted

memory to the jobs is not enough to complete the job then

garbage collector activities will increase. To avoid more

garbage collector activity and the task out of memory

exception, we should set io.sort.mb parameter to a value

more than 0.25 and less 0.50. This parameter is linked with

the mapred.child.java.opts. By default partial memory is

allocated to mapred.child.java.optsis assigned to io.sort.mb

parameter. The formula to calculate mapred.child.java.opts

factoris:

(Map task maximum + reduce task maximum) * Memory to

allocate (in MB) < available RAM – reserved memory.

To set the sort buffer the following formula is used:

io.sort.mb=10*io.sort.factor

Paper ID: SUB153885 3151

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

This value is then set in the Hadoop path’s configuration file

and any application can be executed. This is run for a word

count application.

d) Combined Approach
Here, the two techniques that are increasing the number of

mapper and reducer slots and reuse of JVM are combined.

Both these procedures factors are set in the Hadoop path’s

conf file and any application can be executed to measure the

enactment. After applying the combined method for any task

run it takes less response time and hence provides a better

performance for a large input file or data set.

4. Experimentation Results

4.1 Cluster Setup

We used a minimum of three nodes to set up a multi node

cluster [6]. Once the multi node cluster is established which

will consist of a master node and many slave nodes

connected to each other by means of IP addresses. We have

to get the path of the Hadoop file. In the Hadoop file the

configuration file has to be located and in this file a topology

script file has to be created for the racks. This topology file

has to be an executable one. In this script file the Hadoop

path has to be specified and in the same conf file another

data extension data file has to be created which will contain

all the IP addresses of the slave nodes. The IP addresses

should be arranged in ascending order based on the node

configuration details. A high configuration node should be

given priority so that when the racks are created large sized

data will get placed on the high configuration node. This is

how data placement is done and this helps in the efficient

utilization of the resource.

4.2 Performance Evaluation

We took an application of word count which takes a book

file as an input. The book file is divided into two input

sources one is a small book file about 25MB and a book file

of size around 155MB. The parameters were evaluated and

the performance was measured.

Consider the Hadoop path’s configuration file and the

parameters will be modified in the xml file of mapred. First

for increasing the mapper and reducer slots, we considered

dual core processor and two slave machines. Hence, CPU

core is four and the machine does not support hyper

threading factor. Therefore, maximum number of mapper

slots and cluster mapper capacity will be:

Maximum number of = (CPU cores – 1 reserved core for

mapper slots Hadoop daemon) * x

Maximum number of = (4 – 1) * 0.95 = 2.85 ≈ 3mapper

slots

Cluster mapper = Maximum number of mapper slots

capacity * number of nodes

= 2.85 * 2 = 5.7 ≈ 6

Similarly, the maximum number of reducer slots and cluster

capacity is computed as below:

Maximum number of reducer slots = (4-1) * 0.95

 = 2.85 ≈ 3

Cluster reducer capacity = 2.85 * 2

 = 5.7 ≈ 6

Next technique reusing the JVM, here the parameter

mapred.job.reuse.jvm.num.tasks is modified. We set the

value to -1 where the number of tasks that the JVM can

execute is not limited. Then the first technique and the

second techniques are combined and the performance is

measured and the graph is plotted for these parameters

before and after modifications.

Figure 1: Before modifying the parameters comparing the

performance

Here, before the parameters are modified the response time

the word count application takes for the book files of

varying sizes is more. The response time indicates the

performance. The lesser the response time the better the

performance. After applying the changes and modifying the

parameters in the xml file of Hadoop’s configuration the

values are added as follows:

<property>

<name>mapred.tasktracker.map.tasks.maximum</name>

<value>3</value>

</property>

<property>

<name>mapred.tasktracker.reduce.tasks.maximum</name

>

<value>3</value>

</property>

<property>

<name>mapred.job.reuse.jvm.num.tasks</name>

<value>-1</value>

</property>

The graph below shows the changes after adding the

properties above in the configuration file and shows less

response time providing a better performance for files of

varying input sizes.

Paper ID: SUB153885 3152

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: After modifying the parameters comparing the

performance

The above graph shows that the combined approach gives a

better performance when compared to individual parameters.

5. Conclusion and Future Work

This paper aims at enhancing the performance of the

Hadoop tool by manually doing the data placement in the

nodes of the cluster and then applying the techniques of

increasing the mapper and reducer slots and reusing the

available JVM’s for every tasks rather than creating a new

one for every job run. The performance can also be

improved by using the sort buffer and the sort factor. These

approaches are compared based on the response time it

provides for a word count application that is run. The

combined approach gives a better enhancement when

compared to the individual parameters. The future work will

focus on applying a data prefetching mechanism where the

tasks can be run on any node irrespective of where the data

is present. This can be done by creating a buffer to save the

data for processing of the tasks.

References

[1] Rajashekar M. Arasanal, DaanishU.Rumani,

“Improving MapReduce performance through

complexity and Performance based data placement in

heterogeneous Hadoop clusters”.

[2] Tao Gu, Chuang Zuo, Qun Liao, Yulu Yang and Tao

li,“Improving MapReduce performance by data

prefetching in heterogeneous or shared environments”.

International journal of grid and distributed computing

vol.6, 2013.

[3] Jiong Xie, Shu Yin, XiaojunRuan, Zhiyang Ding, Yun

Tian, James Majors, Adam Manzanares and Xiao Qin

“Improving MapReduce performance through data

placement in heterogeneous Hadoop clusters”. Proc.19

heterogeneity computing workshop, Atlanta April,

2010.

[4] Madhavi Vaidya, “Parallel processing of cluster by

MapReduce”. International journal of distributed and

parallel systems, vol.3, January 2012.

[5] B. ThirumalaRao, N.V Sridevi, V.Krishna Reddy, L.S.S

Reddy “ Performance issues of heterogeneous hadoop

Clusters in cloud computing”. Global journal of

computer science and technology vol XI, May 2011.

[6] Apache, Hadoop, http://hadoop.apache.org/MichaelNoll

Multinode Hadoop Cluster Installation.

[7] CBT Nuggetshttp://cbtnuggets.troubleshooting.

administrating.optimizinghadoop.com

Author Profile

A Ankita Poovaiah completed the Bachelor’s Degree

in Information Science and Engineering from

Visvesvaraya Technological University (VTU).

Currently pursuing M.Tech Degree in Computer

Science and Engineering at Mangalore Institute of

Technology and Engineering.

Mr. Gopal B received Master Degree in Computer

Science and Engineering from NITK. He is currently

working as Assistant Professor in the Department of

Computer Science and Engineering, Mangalore

Institute of Technology and Engineering.

Paper ID: SUB153885 3153

http://hadoop.apache.org/MichaelNoll

