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Abstract: Relative importance of the explanatory variables in linear regression is very crucial for implementing a policy by policy 

makers. In India demand for money is very important in determining the effectiveness of Government policy in changing the level of 

income, interest rate and price. In this paper we observe from the ANOVA model that partially interest rate is the most significant 

variable to explain the variability of the dependent variable, M1. But this is not the correct scenario because of the presence of 

multicollinearity. There is a strong multicollinearity between income and price. But while we do an average of orthopartial correlation 

and simple correlation, then the importance of the interest rate becomes the least. If the policy makers identify the actual reason for 

which it is happening and which variable is most responsible and accordingly proceed the outcome will be maximum. But in the existing 

literature we cannot correctly estimate the relative importance of explanatory variables in the presence of multi-collinearity – 

multicollinearity with or without enhancement synergism and with or without change in sign. The existing problem is not completely 

solved. Based on the work of Mondal (2008) this paper tries to prescribe a solution for finding the relative importance of explanatory 

variables in linear regression. The methodology is illustrated with the help of a time series estimation of demand for money function in 

India. 
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1. Introduction 
 

The Classical Linear Regression Model (CLRM) is the most 

popularly used econometric model.  Its use in factor analysis 

is common to all econometric practitioners. It is also used in 

the disciplines like sociology, psychology and other social 

sciences, medical and other bio sciences, and now in 

mathematics and other pure sciences.  In such model, it is 

examined how an explained variable is linearly regressed 

upon a set of explanatory variables, or how the variation of 

an explained variable is linearly explained by a set of 

explanatory variables.  The importance of the explanatory 

variables or the factors taken together in such a model is 

empirically judged by the proportion of variance of the 

explained variable to be explained by the explanatory 

variables and is measured by the coefficient of 

determination.  The question of relative importance of the 

explanatory variables, or the question of partitioning the 

coefficient of determination among the explanatory variables 

is crucial but not yet completely resolved.  Various 

fragmented efforts are observed in the literature from the 

early years of the previous century, but the problem is not 

yet solved as it is not properly encountered.  [For example, 

see Hooker and Yule (1906), Tinbergen (1939), Snedecor 

and Cochran (1976), Lindeman et al (1980), Pedhazur 

(1982), Cox (1985), Kruskal (1987a, 1987b), Pratt (1987), 

Kruskal (1989), Kruskal and Majors (1989), Chevan and 

Sutherland (1991), Bring (1994), Feldman (2005), 

Gromping (2007), etc.  Firth (1998) gives a very beautiful 

critical survey of the main works up to mid-nineties in this 

field.]  The main problem of all these efforts is not to realize 

perfectly the theoretical framework in which the question of 

relative importance of the explanatory variables is raised and 

tried to be solved, and the implications of the tools used for 

that purpose. 

 

The question of relative importance arises only in the 

multiple regression model where the number of explanatory 

variables is more than one.  The general theoretical form of 

the Classical Linear Multiple Regression Model is given as

UX.........XXY kk22110  .  It is 

assumed that the true theoretical relation is 

kk22110 X.........XXY   and U is the 

disturbance term by which the observed relation between the 

explained variable Y  and the explanatory variables 

k21 X,,.........X,X  is theoretically disturbed from the true 

theoretical relation.  With the help of this model, it tries to 

examine how the explained variable Y  is linearly explained 

by several explanatory variables k21 X,,.........X,X .  The 

coefficient of jX , denoted by j , measures the amount of 

change in Y  for one unit change in jX , the values of all 

other explanatory variables remaining constant; the 

coefficient is thus known as the partial regression 

coefficient.  In such model it is assumed that the explanatory 

variables are non-stochastic and are linearly independent of 

the disturbance term.  Thus the explanatory variables have 

no sampling fluctuations or they take fixed sets of values in 

repeated samples.  Under this assumption, the sampling 

distributions of the estimated parameters are smoothly 

obtained and the process of decomposition of the explained 

variance into those contributed by the explanatory variables 

or the method of decomposition of the coefficient of 

determination into those due to the concerned variables is 

tried in the literature. 

 

Kruskal (1987a) proposes the method of averaging over 

orderings for obtaining the relative importance of different 

variables.  He suggests to average „accounted for 

proportions of variance over orderings – that is, to average 

squared partial correlations‟ [Kruskal (1987b)].  A variation 

of this is to average actual reductions of remaining variance 

rather than proportions – that is to average so-called semi-

partial correlation coefficients.  This is also discussed but 
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discarded by Kruskal (1987a).  This variation is also 

proposed earlier by Lindeman et al (1980, pp. 120-127) on 

the ground that this leads to perfect decomposition of the 

coefficient of determination.  However, Kruskal (1987a) 

argues, „it is misleading to look at actual variance accounted 

for because variable in order can at best only take care of 

what variance is left over from the first variable‟s work‟. 

 

Chevan and Sutherland (1991) demonstrate a method based 

on a theorem of hierarchies taken from mathematics to 

decompose R
2
 through incremental partitioning.  A 

validation test by them demonstrates that the algorithm is 

sensitive to the relationships in the data rather than the 

proportion of variability accounted for by the statistical 

model used.  The method gives identical result with that 

proposed by Lindeman et al (1980) which is based on some 

simple logic though it is discarded by Kruskal (1987a) based 

on some statistical logic.  Feldman (2005) proposes a 

method based on a theorem of cooperative game – to arrive 

at the proportional value of the game – to decompose R
2
 

through incremental proportional partitioning.  Thus, he 

suggests some modifications over ‘Hierarchical 

Partitioning’ of Chevan and Sutherland (1991).  Feldman 

(2005) also addresses to some admissibility criteria for 

measures of relative importance and finds that his proposed 

method satisfies them.  Gromping (2007) compares the 

performances of the LMG method [proposed by Lindeman, 

Merenda and Gold (1980) and supported by Chevan and 

Sutherland (1991)] and the PMVD method [Proportional 

Marginal Variance Decomposition method proposed by 

Feldman (2005)] and finds that the second one is better than 

the first one. Thus, the mathematical logic inherent in the 

„hierarchical partitioning‟ or the game theoretic logic 

inherent in the „Proportional Marginal Variance 

Decomposition‟ seems to surpass the statistical logic of 

„proportion of variability accounted for‟ by the explanatory 

variables. 

In this paper we have tried to develop a model in Indian 

context on demand for money ( M1) to illustrate the relative 

importance of explanatory variables. From the existing 

literature demand for money is seen to be influenced by 

income, price and rate of interest as suggested by Keynes 

(1936), Baumol (1952). Here we try to estimate which 

variable among these three, that is, income, price and rate of 

interest will be more significant for explaining the variability 

of demand for money. 

 

2. Hypotheses 
 

The following are the hypotheses to be tested in our study. 

1. Transaction and precautionary demand for money(M1) 

being more relevant than speculative demand in a 

developing country like India, GDP and WPI are more 

significant than interest rate. 

2. Partial correlation, as used in the existing literature, plays 

unimportant role in determining the true importance of 

the explanatory variables. It is able to explain the 

marginal importance of the variables only. 

3. True partial importance can be explained only by 

orthopartial correlation.  

4. True importance of the variables can be described only 

by an average of orthopartial and simple correlation. 

 

3. Data Base 
 

In this model, we have taken narrow money (M1) as demand 

for money, Gross Domestic Product (GDP) as income, 

average commercial bank deposit rate for above 5 years time 

deposit as Interest Rate and Wholesale Price Index (WPI) as 

price in Indian context for simplicity. We cover the time 

period from 1970-71 to 2001-02. The relevant data on M1, 

GDP at factor cost (1993-94 prices), Interest Rate and WPI 

are obtained from Monetary Statistics and Handbook of 

Statistics on Indian Economy, RBI. 

 

4. Empirical Methodology and Benchmark 

Results 
 

We aim to investigate the impact of GDP, Rate of Interest 

and WPI on M1 (Demand for Money) in Indian context. At 

first we consider ordinary least squares (OLS) specifications 

and try to estimate partial correlation, that is, relative 

importance of the explanatory variables.  

 

Thus, our empirical specification is as follows 

Y = α + β1 X1 + β2 X2 + β3 X3 + εi 

Where, Y is the M1, X1 is GDP, X2 is Interest Rate and X3 is 

Wholesale Price Index. 

  

Granger Causality Test 

As we use a time series model, firstly we check Granger 

Causality Test. From Granger Causality Test between M1 

and GDP, GDP does not Granger cause M1, which is 

statistically significant at 5% level („P‟ value is 0.04680). 

Between M1 and Interest Rate, Interest Rate does not 

Granger cause M1, which is statistically significant at 10% 

level (0.07535). And between M1 and WPI, WPI does not 

Granger cause M1, which is also statistically significant at 

5% level (0.03141) (Table-1). From this test, we see that 

there is one way relationship. 

 

Unit Root Test 

Now we check unit root test. To gauge the appropriateness 

of the ARDL cointegration analysis, two unit root tests, viz. 

ADF test and PP test were conducted for the sample periods. 

From both these tests, M1, GDP and WPI are indicated to be 

a stationary series of I (2) by both the tests at 1% level of 

significance. But interest rate is to be stationary series of I(1) 

by both the tests at 1% level of significance (Table-2). The 

overall picture that emerges is that the three variables 

considered are not necessarily integrated of the same order. 

                                       

Table 1 

Series Null Hypothesis “F”- Statistics “P” -Value 

M1 AND GDP GDP DOES NOT GRANGER CAUSE M1 M1 DOES NOT 

GRANGER CAUSE GDP 

3.47**              0.57 0.04680    0.57206 

M1 AND INT INT DOES NOT GRANGER CAUSE M1   M1 DOES NOT 

GRANGER CAUSE INT 

2.87*                  2.33 0.07535  0.11737 

M1 AND WPI WPI DOES NOT GRANGER CAUSE M1   M1 DOES NOT 3.99**               2.41 0.03141  0.11001 
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GRANGER CAUSE WPI 

Note: * and ** denote rejection of the null hypothesis at 10% and 5% levels respectively.  

 

Table 2 

Variable(X) ADF PP 

X ΔX Δ²X X ΔX Δ²X 

 t-value t-value t-value t-value t-value t-value 

M1 4.10 0.12 -6.47** 11.89 0.25 -10.85** 

GDP 4.44 -1.50 -6.29** 8.93 -2.26 -11.46** 

Interest rate -2.61 -4.58** -6.34** -2.05 -3.82** -7.65** 

WPI 1.97 -1.87 -5.46** 3.62 -2.70 - 8.62** 

Note: * and ** denote statistical significance at 5% and 1% levels, respectively. 

  

Linear Regression Analysis (OLS)  
Now we regress Y on X1, X2 and X3. From this regression 

we get that R
2 

is 0.9797, which is statistically significant. 

Here the coefficient of interest rate is highly significant at 

1% level, the coefficient of WPI is significant at 5% level 

but the coefficient of GDP is statistically insignificant. GDP 

and WPI are directly related to M1 and Interest Rate is 

inversely related to M1. If we want to know the partial 

correlation or relative importance of the variable(t
2
/t

2
+ 

degree of freedom) as  in the existing literature then we see 

that interest rate is the most significant variable which 

explains about 51% of the variability of Y. WPI is the 

second significant variable which explains about 14% of the 

variability of Y. And the role of GDP is negligible (Table-3). 

But there is a strong multicollinearity between GDP and 

WPI while Variance Influencing Factor (VIF) about 137 and 

144 respectively. Consequently what we have achieved is 

erroneous because of the presence of multicollinearity. In 

the presence of multicollinearity, we cannot correctly 

estimate the explanatory power of explanatory variables. 

 

Table 3 
Variable Coefficient Standard 

Error 

‘T’ Stat 

 

‘P’ Value Partial Correlation 

INTERCEPT 36485.01 42183.01 0.8649 0.394432  

GDP 0.159916 0.130494 1.22546 0.230611 0.050904 

Interest rate -14809.5 2709.513 -5.46574** 7.78E-06 0.516193 

WPI 729.4424 343.2885 2.124867* 0.042559 0.138861 

Note: * and ** denote statistical significance at 5% and 1% levels respectively. 

 

5. Relative Importance of Explanatory 

Variables 
 

While we are interested to know the partial significance of 

the explanatory variables we observe the significance of the 

partial regression coefficient. The partial regression 

coefficient can be interpreted in two ways. 

1) The coefficient can be interpreted as the amount of 

change in that part of Y which is not influenced by other 

explanatory variables with one unit change in that part of 

Xj which is not explained by other explanatory variables.  

2) It can also be interpreted as the amount of change in Y 

for one unit change in that part of Xj which is not 

explained by other explanatory variables.  

 

The term partial regression coefficient actually fits to the 

second interpretation though we are used to fit it to the first 

in econometric literature.  The coefficient of Xj interpreted 

in the first way can better be named as marginal regression 

coefficient.  [See Mondal (2008) for details.] 

     

If we are interested in the significance of the marginal 

regression coefficient (or in the marginal significance of the 

regression coefficient) we have to consider the regression of 

residue of Y on residue of all Xj, and if we are interested in 

the significance of the partial regression coefficient (or in 

the partial significance of the regression coefficient) we 

have to consider the regression of Y on residue of all Xj.  

The correlation obtained in the first regression is known in 

the existing literature as the partial correlation, though it is 

not correctly partial.  The correct partial correlation can be 

obtained only in the second regression and thus, Mondal 

(2008) names it the orthopartial correlation (ortho meaning 

correct).  

The squared orthopartial correlation of jX  with Y is 

effectively the incremental correlation due to jX  (which is 

logically, but not mathematically, explained also as the 

semi-partial correlation by Cohen and Cohen (1980) and 

others) when it is entered after all other explanatory 

variables.  Thus, in a model with two explanatory variables, 

this squared orthopartial correlation implies the relative 

importance of the concerned variable on the one extreme, 

and the squared simple correlation implies the same on the 

other extreme.  Hence, the principle of averaging of the 

squared simple correlation and the incremental correlation 

(which is actually squared orthopartial correlation) becomes 

statistically relevant. 

 

In our model we observe, the coefficient of determination, 

i.e., R
2
 = 0.9797.  The squared simple correlations of M1 (Y) 

with GDP(X1 ), Interest Rate(X2 ) and WPI(X₃ ) are 

respectively  r1
2
 = 0.9579, r2

2
 = 0.1161 and r₃² =0.9462.  As 

r1
2
 + r2

2
 + r₃²= 2.0202> R

2
 = 0. 97976 the explanation of the 

variance of Y provided by X1, X2 and X₃ are overlapping or 

the variables X1, X2 and X₃ are partially linearly related as 

shown in the Venn diagram (Diagram-1). This overlapping 

portion is due to the presence of multicollinearity. The 

rectangular box represents variance of Y 
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The orthopartial correlation of  X1 , X2  and X₃ are 0.0010, 

0.0215 and 0.0032 respectively(i.e, regression of  Y with the 

residue of X1, on X2 and X₃, X2 on X1 and X3 and X3 on X1 

and X2   respectively). The overlapping area out of 0.9797 

value of R
2
 is either due to X1 only , or due to X2 only , or 

due to X₃ only , or due partially to X1 , partially to X2 and 

partially to X₃. 
The importance of X1, measured by its explanatory power, 

lies in between 0.0010 (the squared orthopartial correlation 

of X1), and 0.9579 (the squared simple correlation of X1). 

Therefore, the average importance of X1 is an average of 

0.0010 and 0.9579 and that of X2 is an average of 0.0215 

and 0.1161 and that of X₃ is an average of  0.0032 and 

0.9462. 

 

The overlapping portion between  X1 and X2 (denoted by the 

area 1.2), which is shown in the Venn diagram (Diagram-1) 

is obtained from the regression of Y with the residue of X1 

on X₃ which is subtracted from the orthopartial correlation 

of  X1  or from the regression of Y with the residue of X2 on 

X₃ which is subtracted from the orthopartial correlation of 

X2 , and its value is estimated to be 0.0109. 

 
Diagram 1 

 

In the same way we obtain the overlapping portion between 

X1 and X₃ (denoted by the area 1.3) and between X2  and X₃ 
(denoted by the area 2.3) and the values are 0.8592 and -

0.0030 respectively.  

 

The overlapping area is decomposed by Proportional 

marginal variance decomposition (PMVD) method.  This 

method was proposed by Feldman (2005), and Gromping 

(2007) supported the method.  And this method was 

modified by Mondal (2008). 

By PMVD method we decompose the area 1.2 and get the 

shares of X1 and X2 which are 0.0005 and 0.0103 

respectively.  And by this method we also decompose the 

overlapping portion i.e, 1.3 and 2.3 and get the share of X1  

and X₃ as 0.2144 and 0.6447 respectively, and the shares of 

X2  and X₃ are -0.0026 and -0.0003 respectively. 

 

The overlapping portion of the three explanatory variables 

(denoted by the area 1.2.3) are obtained from the squared 

simple correlation of X1 which is subtracted from the area 

1.2 and 1.3 or from the squared simple correlation of X2 

which is subtracted from the area 1.2 and 2.3  or from the 

squared simple correlation of X₃ which is subtracted from 

the area 1.2 and 1.3 , and its value is 0.0867. By PMVD we 

decompose the area 1.2.3 and we get the shares of X1, X2 

and X₃ as 0.0210, .0028 and 0.0629. 

The relative importance of GDP (X1 ) is the sum of 

orthopartial correlation of X1 (0.0010), the share of X1 in 1.2 

and 1.3(0.0005 and 0.2144) and the share of X1   in 

1.2.3(0.0210) as 0.2369.  

 

The relative importance of Interest Rate (X2  ) is the sum of 

orthopartial correlation of X2  (0.0215), the share of X2  in 1.2 

and 2.3(0.0103 and -0.0026) and the share of X2 in 1.2.3  

(0.0028) as 0.0322. 

 

The relative importance of WPI (X₃) is the sum of 

orthopartial correlation of X₃  (0.0032), the share of X₃  in 

1.3 and 2.3(0.6447 and -0.0003) and the share of X₃ in1.2.3 

(0.0629) as 0.7105 (as shown in table-4). Orthopartial 

correlations are equal to simple correlations, in sign as well 

as in value, in the absence of any linear relation among X1, 

X2 and X3.  They, in the presence of multicollinearity, are 

normally less in value than simple correlations as is 

illustrated in the example above.  Or, normally, the sum of 

the squared simple correlations of the three variables is 

greater than the coefficient of determination.  But as 

Hamilton (1987, 1988) indicates and as Shieh (2001) 

explains there may be situations of multicollinearity where 

the sum of the squared simple correlations of the two 

variables is less than the coefficient of determination or the 

squared simple correlations are less than squared 

orthopartial correlations.  This situation is known as 

enhancement-synergism (For further explanation see 

Mondal (2008)). In our model there is no enhancement-

synergism. 

 

Table 4 
   1.3 1+1.3   1.2+1.2.3  REL IMP 

 1 X3 0.8592 0.8603 (+ve) X2 0.0976 1+1.2+1.3+1.2.3  

X1 0.0011  1.2 1+1.2   1.3+1.2.3 0.9579 0.237 

 (+ve) X2 0.0109 0.0119 (+ve) X3 0.9460 (+ve)  

          

   2.3 2+2.3   1.2+1.2.3   

 2 X3 -0.003 0.0186 (-ve) X1 0.0976 2+2.3+1.2+1.2.3 0.032 

X2 0.0216  1.2 2+1.2   2.3+1.2.3 0.1162  

 (-ve) X1 0.0109 0.0325 (-ve) X3 0.0837 (+ve)  

          

   3.2 3+3.2   1.3+1.2.3   

 3 X2 -0.003 0.0003 (-ve) X1 0.9460 3+3.1+3.2+1.2.3  

X3 0.0033  3.1 3+1.3   3.2+1.2.3 0.9462 0.710 

 (+ve) X1 0.8592 0.8625 (+ve) X2 0.0837 (+ve)  
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From Table-4 we show the results of the regression by path 

analysis from orthopartial correlation to simple regression. 

Here we see that the orthopartial correlation of X1, that 

means variable X1 explain that part of Y which is not 

explained by X2 and X3. X2 and X3 explain the dependent 

variable Y to the extent of 0.9787. So X1 explains 

0.0011(area 1) out of 0.0213(total explanatory power=1). 

But there exists some overlapping portion among the three 

explanatory variables. Now we show that the overlapping 

portion between X1 and X3, i.e, 1.3 (08592). If we consider 

that the area 1.3 is fully explained by the  X1 then we add the 

area 1+1.3 (0.8603). Therefore we see that the value of area 

1+1.3 (0.8603) is greater than the area 1 (0.0011). This is 

due to the presence of multicollinearity without 

enhancement synergism. Similarly, the overlapping portion 

between X1 and X2, i.e, area 1.2 (0.0109) is fully explained 

by X1 then the area is 1+1.2 (0.0119), the value being greater 

than area 1. This is due to the presence of multicollinearity 

without enhancement synergism. Now we consider the 

overlapping portion among the three explanatory variables,  

i.e, area 1.2.3 and add these overlapping portions with area 1 

to get the total explanatory power of X1 which is equal to the 

simple regression of Y on X1, i.e., 0.9579. Therefore the 

range of variable X1 is 0.0011 to 0.9579 to explain the 

dependent variable Y where the minimum value is 0.0011 

and maximum value is 0.9579 and the average importance of 

this variable occurs between these two values, and the 

average importance is 23.7%. But the marginal correlation 

of the explanatory variable X1 is 5.09%. We know that X2 

and X3 jointly explain 0.9787. Thus marginally X1 explains 

5.09% out of 0.0213 which is actually wrong. Although the 

average importance is in this range (minimum and maximum 

value) yet this is wrong. In this case we observe that 

marginally the importance of variable X1 is less where 

Orthopartially variable X1 is a significant variable. 

 

Similarly we observe from Table-4 that orthopartial 

correlation of X2 is 0.0216. If we add the overlapping 

portions with area 2(2+1.2+2.3+1.2.3), we get the total 

explanatory power, i.e., 0.1162 which is equal to the simple 

regression. There exists the problem of multicollinearity 

without enhancement synergism when we add the area-2.3 

with area-2. Therefore the average importance of the 

variable is 3.22%. But the marginal correlation of X2 is 

51.61%. We know that X1 and X3 jointly explain Y to the 

extent of 0.9582. So X2 explains 0.5161 out of 0.0418, 

which is wrong. Also we observe that marginal correlation 

exceeds the simple correlation. In this case marginally the 

importance of variable X2 is the most significant variable 

where Orthopartially variable X2 is least significant. 

 

Again we observe from Table-4 that orthopartial correlation 

of X3 is 0.0013. If we add the overlapping portions with area 

3(3+1.3+2.3+1.2.3), we get the total explanatory power 

0.9462 which is equal to the simple regression. There exists 

the problem of multicollinearity without enhancement 

synergism when we add the area 3 and 2.3. Therefore the 

average importance of the variable is 71.05%. But the 

marginal correlation of X3 is 13.88%. We know that X1 and 

X2 jointly explain Y to the extent of 0.9765. So marginally 

X2 explains 0.1388 out of 0.0235 which is wrong.  In this 

case also we see that marginally the variable X3 is less 

important where Orthopartially variable X3 is the most 

significant variable. 

 

6. Conclusion 
 

From the existing ANOVA model, partially (marginally) 

interest rate is the most significant variable (it explains 51% 

of the variability of demand for money). WPI is the second 

significant variable which explains 13.88% of the variability 

of M1. GDP is less significant variable which explains 5% of 

the variability of M1. Speculative demand for money has a 

very crucial role in the Indian economy.  

 

In respect of the relative importance, Orthopartially  Interest 

Rate in our present worked out model is the most significant 

variable which explains 2.16% of the variability of M1. But 

when we add the total share of interest rate, it explains only 

3.22% of the variability of M1 and becomes the least 

significant variable.  After the summation of total share of 

WPI, it is the most significant variable which explains 71% 

of the variability of M1. Accordingly GDP is the second 

significant variable which explains 23.70% of the variability 

of M1. The role of Speculative demand for money is 

negligible in India. Rather the role of transaction and 

precautionary demand for money has greater importance in 

India. 
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