
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Study for IPv4 and IPv6 Coexistence

Abhay Singh
1
, Alabhya Maheshawari

2
, Dushyant Shukla

3

1, 2, 3Galgotias College of Engineering and Technology, Knowledge Park- II, Greater Noida, Uttar Pradesh (201306), India

Abstract: IPv6 developed by Internet Engineering Task Force (IETF) regarded as the next generation Internet Protocol asks for the

need for replacing the current Internet Protocol (also known as IPv4). IETF being harbinger to this new technology proposes several

transition mechanisms for the purpose of integration of IPv6 with the existing networks. This work examines and conjecturally

evaluates various approaches aimed at the coexistence of IPv4 together with IPv6, namely dual stack, tunneling and translation

mechanisms. This paper throws light on the basis of these different approaches along with the various issues associated with their

practical implementations.

Keywords: Dual stack, IPv4, IPv6, tunneling.

1. Introduction

Migrating instantly from IPv4 to IPv6 is impractical because

of the large size of the Internet and the vast number of users

that are already on the IPv4. Moreover, more and more

organizations are becoming increasingly dependent on the

Internet for their work and therefore, cannot afford to

undergo the downtime required to switch from IPv4 to IPv6.

Therefore, the situation does not call to decide a single stage

at which all the IPv4 networks are turned off, and the IPv6

ones are turned on. Rather the two versions of the internet

protocol can exist together simultaneously, and the transition

from IPv4 to IPv6 can be carried out step by step, node by

node. Meanwhile, the complete transition takes place the two

versions can work together without any problems. It should

be ensured that the migration from IPv4 to IPv6 is carried out

node by node using auto-configuration procedures to

eliminate the need to configure the IPv6 hosts manually. This

way the newly implemented IPv6 networks can provide

internet users with the various advantages that the IPv6 has to

offer and at the same time maintaining the possibility of

communicating with IPv4 users or peripherals. Therefore

there seem to be no reason not to move to IPv6. In this paper,

we are going to have a look at various mechanisms as

devised by the IETF to ensure all that is being promised.

IETF has been working on the deployment of the next

generation Internet Protocol that can take the place of the

current version 4 of the Internet Protocol. As it is very

impractical and expensive to switch already existing IPv4-

based infrastructure with IPv6 and therefore to confirm swift

integration of IPv6 into existing networks, the IETF IPng

Transition working party has been working on many

transition methods, tools, and mechanisms. In general, what

is done in these transition mechanisms is that the IPv6

packets are encapsulated into IPv4 packets and are

transported over an IPv4 network infrastructure. As the

internet completes its transition from IPv4 to IPv6-based

infrastructure, it is only valid to have faith in these

conversion techniques.

The aim of this work is to examine and conjecturally evaluate

various approaches aimed towards the coexistence of IPv4

together with IPv6, namely dual stack, tunneling and

translation mechanisms. This paper throws light on the basis

of these different approaches along with the various issues

associated with their practical implementations.

2. Background

Internet Protocol first came into existence in the early 1980s.

In the 1990s, the pace at which the Internet was growing

made it only evident that the IPv4 address space would

ultimately get exhausted. However, some solutions were

devised to cope with the situation. Some of them are NAT

(Network Address Translation) and CIDR (Classless Inter-

Domain Routing). However, the work on next generation

Internet Protocol, namely IPv6 had already started.

The chief reason for a new Internet Protocol was to be at par

with the ever increasing rate of Internet users by increasing

the address space; IPv6 was designed with 128 bit address

scheme, enough to label every molecule on the surface of the

earth with a unique address. Moreover, at the time when IPv4

came into existence Internet was loaded with elastic traffic,

such as emails and file transfers which can mold itself

according to the network conditions. Whereas inelastic traffic

is not much flexible in terms of the condition of the network

and can render any application useless if a certain quality of

performance is not ensured. IPv6 supports both elastic and

inelastic traffic.

[1]

IPv6 is structured to support scalability, security, and

multimedia transmissions:

 IPv6 has addressing space of 128 bits

 IPv6 header mandates IPsec support.

 The Flow Label field in the IPv6 packet header is now

responsible for identifying payload for QoS handling by

routers.

 In IPv6 hosts instead of routers are responsible for

Fragmentation support.

 IPv6 brings in extension headers and scraps support for

checksum and options included in the header.

 IPv6 is equipped with auto-configuration mechanisms

which do not need manual configuration or DHCP

(Dynamic Host Configuration Protocol).

Overall, IPv6 is carefully designed and developed keeping in

mind the needs of future applications.

Paper ID: SUB153795 2809

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The major change has been brought in the packet layouts for

IPv4 and IPv6. The header length of IPv4 and IPv6 are 20

bytes and 40 bytes respectively. IPv6 has a lesser number of

required fields by the virtue of the extension header that

makes them optional in spite of the fact that IPv6 has an

address space four times as large as that of IPv4. Now the

question is does this increased 20 bytes cause any

performance overhead. Statistics suggest that the

performance overhead caused is highly insignificant in

theory.

3. Migration Technologies

There are various transition techniques available such as:

 Dual-stack,

 DTI and Bump-in-dual-stack

 NAT Protocol Translator

 Stateless IP/ICMP Translator (SIIT)

 Assignment of IPv4 Global Addresses to IPv6 Hosts

(AIIH)

 Tunnel Broker,

 6-to-4 Mechanism

 6-over-4 Mechanism

 IPv6 in IPv4 tunneling.

While dual stack mechanisms are easiest to implement, still

complexity is increased at the hosts as the infrastructure cost

is higher due to a more complex technology stack. NAT

Protocol not only has scaling and DNS issues, it also suffers

from the single point of failure disadvantage. The Tunnel

Broker although dynamically gains access to tunnel servers

but has authentication and scaling issues.
[1]

 6-to-4 technique

brings about tunnels which are dynamic as well as stateless in

nature over IPv4 infrastructure in order to connect to 6-to-4

domains. Whereas isolated IPv6 hosts are connected over the

IPv4 infrastructure without the need of any IPv6 enabled

routers or tunnels through 6-over-4 technique. Also with

some help of manually configured tunnels the existing

infrastructures can be used via IPv6 in IPv4 tunneling.

In this paper, we have chosen to restrict our study to

migration techniques that fall under the following three

categories:

 Dual stack – support both IPv4 and IPv6 on network

devices.

 Tunneling – encapsulation of an IPv6 packet within an

IPv4 packet for transmission over an IPv4 network.

 Transition – address or port transition of addresses such

as via a gateway device or the host’s or router’s TCP/IP

code that provides with the transition code.

4. Dual-Stack Methodology

This technique makes available the devices that can process

IPv4 as well as IPv6 network together at the same time.

However whenever the traffic is received by any such node

IPv6 is given a preference over IPv4. If the received traffic

only consists of IPv4, nodes can process it as well.

During the conversion process there will be devices, such as

routers, other infrastructure devices and end-user devices etc.

which require access to both network-layer technologies and

therefore call for the need of implementing both IPv4 and

IPv6 protocol stacks for on these devices. These devices can

be configured with both IPv4 as well as IPv6 addresses, that

too using the methods defined for the respective protocols as

enabled by administrators.
[2]

 For instance, an IPv4 address

may be obtained via DHCPv4 while the IPv6 address may be

auto-configured.

[2]

 The extent of dual-stack implementation may vary. The

two IP versions can have a separate protocol stack with their

unique qualities while sharing the part of it that is common to

both of them. Usually, only the network layer would be

dualized, using a common application, transition and data

link layer. Another approach may utilize separate protocol

stacks for the two protocol versions. While this may violate

the benefits of layered protocol model, it is desirable

especially in the case of network servers having multiple

applications or services, some of which support only one

version or the other.

4.1 Dual-Stack Implementation

As stated earlier the devices that share a common interface

have common physical links serving both versions of the

protocol. Moreover, the dual-stack devices require dual

stacked routers that can support such links much like IPv4 or

IPv6 support provided by the Ethernet and other layer 2

technologies. This is a very common approach during the

transition.

4.2 DNS Issues

[2]
 DNS plays an important role in networking as it provides

the linkage between end-user and the destination IP address.

End-user will access a dual-stacked host by typing in the host

name, and their application will query DNS. If the

application can be configured by the administrators to

support both an IPv4 and IPv6 address query, it may receive

the destination’s IPv4 and IPv6 addresses. Two different API

namely, “bump in the stack” and “bump in the API”

translation techniques support this feature if such a dual-

query lookup is not natively supported by applications.

Any node with dual-stack implementation must support for

the reception of IPv4 as well as IPv6 type of records as it

preforms its DNS resolution and must ensure communication

with destination intended through the use of address and

protocol corresponding to the returned record. The definition

of the network protocol preferred must be enabled by the

resolved configuration in cases where the query returns both

IPv4 as well as IPv6 records. It must also take care of the

protocol to use when issuing DNS queries themselves.

4.3 DHCP Issues

[2]
Each stack in dual-stack mechanism has its own version of

DHCP. That is, DHCP and DHCPv6 provide IPv4 and IPv6

addresses or prefixes. Both forms of DHCP however, provide

additional configuration information such as which DNS and

NTP server is to be used. This information obtained may lead

to incorrect behavior on the client depending on how the

Paper ID: SUB153795 2810

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

information from both servers is merged together. Currently

DHCP and DHCPv6 servers reside on a common physical

server and are used for their respective versions of IP

addresses.

5. Tunneling Methodologies

There are a number of technologies that have be developed to

support IPv4 over IPv6 as well as IPv6 over IPv4 tunneling.

These techniques are either manually configured or are

automatically implemented. Configured tunnels have to be

predefined, on the other hand automatic tunnels are created

just in time.

Commonly, IPv6 packets are tunneled through an IPv4

network by prefixing each IPv6 packet with an IPv4 header

(Figure 1). As a result the tunneled packet can now be routed

over an IPv4 routing infrastructure. Encapsulation is

performed by the entry node (a router or a host) of the tunnel.

IPv4 address of this node and that of the tunnel endpoint

constitutes the source IPv4 address and the destination IPv4

address in IPv4 header respectively. The protocol field of the

IPv4 header is set to 41 (decimal) indicating an encapsulated

IPv6 packet. Decapsulation of the tunneled packet is

performed by the exit node of the tunnel which strips off the

IPv4 header and appropriately routes the packet as to the

ultimate destination using IPv6.

Figure 1: IPv6 over IPv4Tunnel

5.1 Tunnel Types

Based on the tunnel endpoints, tunnels can be grouped into

various categories albeit the basic process of tunneling is the

same for all kinds of tunneling. A typical approach for tunnel

configuration is router-to-router tunnel.

5.1.1 Router-to-Router Tunnel

In figure 2, a packet is sent from the host on the left with

IPv6 address of W across the network to the host on the right

with the IPv6 address Z. A router with an IPv4 address of B

and IPv6 address of X receives the packet. This router has

been configured to tunnel packets over to the network on

which host Z resides. The router encapsulates the IPv6

address packet within an IPv4 header. This router uses its

IPv4 address as the source IPv4 address. The packet travels

the tunnel over to the router with IPv4 address B and IPv6

address Y. Its IPv4 address is used as the destination IPv4

address. This router then decapsulates the packet, stripping

off the IPv4 header and routes the original IPv6 packet to its

intended destination (Z).

Figure 2: Router-to-Router Tunnel

5.1.2 Host-to-Router Tunnel
[2]

Host-to-Router tunneling scenario features an IPv6/IPv4

host capable of supporting both IPv4 and IPv6 protocols. A

packet is encapsulated and tunneled to a router, which is

again decapsulated there and from there it is routed natively

via IPv6. Figure 3 displays the flow as well as the packet

header addresses. Apart from the tunnel endpoints, this

tunneling technique is the same as the router-to-router tunnel

configuration.

Figure 3: Host-to-Router Tunnel

5.1.3 Router-to-Host Tunnel
[2]

The router-to-host configuration and router-to-router

tunneling are very similar to each other. An IPv6 packet is

sent by the IPv6 host on the left of the diagram to its local

router, which in turn routes the packet towards a router

nearest to the destination. The serving router is designed to

tunnel IPv6 packets over IPv4 to the host, as shown within

the figure.

Figure 4: Router-to-Host Tunnel

Paper ID: SUB153795 2811

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5.1.4 Host-to-Host Tunnel
[2]

The Host-to-Host tunneling configuration spans end-to-end,

from host-to-host. If the routing infrastructure is yet to be

upgraded to support IPv6, communication between two

IPv6/IPv4 hosts via a tunnel over IPv4 network is enabled by

this tunneling configuration. This has been shown in figure 5.

The diagram illustrates an end-to-end IPv4 communication.

Figure 5: Host-to-Host Tunnel

6. Translation Methodologies

Translation techniques are used to perform IPv4-to-IPv6

translation (and vice versa) at a particular layer of the

protocol stack, typically the network, transport or application

layer. Translation techniques differ from tunneling in the

sense that the later does not changes the tunneled data packet,

whereas former modify or translate IP packets commutatively

between IPv4 and IPv6. However, these techniques are only

utilized in environments where IPv6-only nodes

communicate with IPv4-only nodes. In dual-stack

environments, native or tunneling mechanisms are used
[1]

.

6.1 Stateless IP/ICMP Translation (SIIT) Algorithm

IP packet headers translation between IPv4 and IPv6 is done

by SIIT. Once configured on aIPv6 enabled host, it converts

the outgoing IPv6 packet headers into IPv4 headers, and

incoming IPv4 headers into IPv6. The IPv6 enabled host

must be provided with an IPv4 address as well so that the

algorithm using DNS resolution to an IPv4 address would

convert the IPv6 packet header into IPv4 header whenever

the IPv6 host tries to communicate with an IPv4 host. The

SIIT algorithm recognizes the situation when an IPv6 address

is an IPv4-mapped address, formatted as shown in the figure

6. The bump-in-the-stack (BIS) or bump-in-the-API (BIA)

techniques are responsible for conversion of resolved IPv4

address into an IPv4-mapped address.

Figure 6: IPv4 Mapped Address Format

SIIT algorithm senses the presence of the IPv4-mapped

address format as the destination IP address and performs

header translation to yield an IPv4 packet for transmission

via the data link and physical layers as shown in figure 7.

Figure 7: IPv4-Transalted Address Format used within SIIT

Figure 8 shows an example of the SIIT algorithm. SIIT stack

is normally packed inside a bump-in-the-stack or bump-in-the

API solution.

Figure 8: SIIT Stack

6.2 Bump-in-the-Stack (BIS)

[2]
BIS is a technique through which IPv4 applications

communicate over IPv6 networks. Data flowing between the

link layer devices (e.g., network interface cards) and the

TCP/IPv4 module is snooped as well as the IPv4 packet are

translated into IPv6 by the BIS. Figure 9 illustrates the

components of BIS.

Figure 9: Bump-in-the-Stack Components

The translator performs the translation of the IPv4 header

into an IPv6 header according to the SIIT algorithm. DNS

queries for IPv4 record types are snooped by the Extension

Name Resolver; an additional query for both IPv4 and IPv6

record types for the same host name is created by the

Extension Name Resolver upon the receipt of such query. If

no affirmative answer is acquired from the IPv6 query, the

communication sticks to using IPv4; if the IPv6 query is

resolved, the Extension Name Resolver instructs the Address

Mapper component to associate the returned IPv4 address

Paper ID: SUB153795 2812

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

(IPv4 record) with the returned IPv6 address (IPv6 record). If

only IPv6 response is received, the Address Mapper assigns

an IPv4 address from a configured pool of addresses.

For the application to be provided with the resolution to the

IPv4 query an IPv4 address is required up the stack to the

application. The real or self-assigned IPv4 addresses are

mapped to the destination IPv6 addresses via the Address

Mapper. The data packets using the IPv4 address are

converted into IPv6 enabled packets for transmission via

IPv6 enabled.

If an external source that has not already been mapped sends

an IPv6 packet to the BIS host, an IPv4 address is assigned to

the source by the Address Mapper from its pool and the IPv6

header is translated into IPv4 for communication up the

stack.

6.3 Bump-in-the-API (BIA)

The BIA strategy makes it possible to use o the IPv4

applications while communicating over an IPv6 network.

Unlike IP header modification provided by BIS, the BIA

approach performs translations between IPv4 and IPv6 APIs.

BIA is placed on the host in between the application and

TCP/UDP layer of the stack. As figure 10 shows, an API

Translator, Name Resolver, Function Mapper and an Address

Mapper constitute BIA.

Figure 10: Bump-in-the-API

When the DNS query is sent by an IPv4 application in order

to determine the IP address of a destination host, the query is

intercepted by the Name Resolver and in turn creates a new

query requesting both IPv4 and IPv6 records. A DNS reply

with an IPv4 record will provide the answer with the given

IPv4 address. Name Resolver is stimulated to request an IPv4

address from the Address Mapper to map the IPv6 address as

returned from the DNS IPv4 reply. The mapped IPv4 address

is utilized by the Name Resolver to return an IPv4 record

response to the application. The Address Mapper maintains

the mapping of IPv6 addresses with those assigned from

internal address pool constituted by the unassigned IPv4

address space (0.0.0.0/24). The interception of API function

calls and mapping of IPv4 API calls to IPv6 socket calls is

performed by the Function Mapper.

6.4 SOCKS IPv6/IPv4 Gateway

[2]
SOCKS, defined in RFC 1928, provides transport relay for

applications traversing firewalls, effectively providing

application proxy services. SOCKS protocol performs the

translation of the IPv4 and IPv6 communications. And in a

very similar manner to the other translation techniques we

have seen, this technique encompasses t DNS name resolving

delegation, a special DNS treatment, through which the

resolved name is delegated to the SOCKS IPv6/IPv4 gateway

from the resolver client. In order for an IPv4 or IPv6

application for communicating with the SOCKS gateway

proxy, it has to be first “socksified” for eventual connection

to a host enabled with the opposite protocol. As it has been

shown in figure 11 an IPV6 host with a SOCKS client is

connected to an IPv4 host, from left to right. An IPv4 host

that has already been socksified can communicate to an IPv6

host, from right to left via the SOCKS gateway.

Figure 11: Basic SOCKS Gateway Configuration

6.5 Transport Relay Translator (TRT)

[2]
Just like the SOCKS configuration, TRT has a stateful

gateway device that connects two “independent” connections

over different networks. The TCP/UDP connection from a host

terminates on the TRT, which in turn creates a separate

connection to the destination host and relays between the two

connections. TRT needs a DNS Application Layer Gateway

(DNSALG), which functions as a DNS proxy. TRT enables

communication between IPv6 hosts and IPv4 terminals, e.g.,

web servers.

[2]

Whenever the IPv6 resolvers request an IPv6 source record

query, the same is triggered by the DNS-ALG; the resolver is

provided with a response and an IPv6 connection is ensured

if and when am IPv6 record is returned. Otherwise, the DNS-

ALG performs an IPv4 record query, and if an answer is

acquired, the DNS-ALG formulates an IPv6 address using

the IPv4 address contained in the acquired IPv4 record. The

prefix C6:: / 64 is followed by 32 zeroes plus the 32-bit IPv4

address. However, the C6:: /64 prefix has not been allocated

by IANA. Thus there exists a requirement of a locally

configured prefix.

Paper ID: SUB153795 2813

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 12: TRT Configuration with DNS-ALG

6.6 Application Layer Gateway (ALG)

Protocol transformations at the application layer is the

responsibility of ALGs. They are also responsible for

application proxy functions just like the HTTP proxies. For a

proxy server, an application is needed to be configured with

its IP address and it is only when the application is opened

that the connection to the server is made just as a browser

connects to the HTTP proxy server upon its launch. ALGs

are useful for web or other application-specific access to the

IPv4 Internet by hosts residing on an IPv6-only network.

7. Conclusion

Numerous IPv4-to-IPv6 transition mechanisms have been

devised to readily enable the migration. Although the

transition towards absolute IPv6 networks has begun but it

will be carried out step-by-step. It is going to be a gradual

process and until the time IPv6 is universally implemented,

IPv4 and IPv6 devices will coexist.

References

[1] Ioan Raicu, Sherali Zeadally, “Evaluating IPv4 to IPv6

Transition Mechanisms”

[2] Tim Rooney, “IPv4-to-IPv6 Transition and Co-existence

Strategies”, Revised and Updated 2011 Edition Peng

Wu, Yong Cui, Jiagchuan Liu, Chris Metz, “Transition

from IPv4-to-IPv6: A State of the Arts Survey”, IEEE

COMMUNICATIONS SURVEYS and TUTORIALS,

accepted for publication

[3] Microsoft, ”IPv6/IPv4 Coexistence and Migration,”

White Paper, Washington, November 2001

[4] S. Tenebaum, Computer Networks, Third Edition,

Prentice Hall Inc., 1996, pp. 686, 413-436, 437-449

[5] T. Dunn, “The IPv6 Transition,” IEEE Internet

Computing, Vol.6, Mo.3, May/June 2001, pp.11-13

[6] W. Richard Stevens, TCP/IP Illustrated, Volume 1: The

Protocols, First Edition December 15, 1993

[7] IETF IPv6 Transition Working Group,

http://www.6bone.net/ngtrans.

[8] IPv6 users’ site: http://www.ipv6.org

[9] “Internet Usage Statistics,” Miniwatts Marketing Group,

Tech. Rep., Jun. 2011. [Online]. Available:

http://www.internetworldstats.com

[10] W. Richard Stevens, TCP/IP Illustrated, Volume I: The

Protocols, First Edition December 15, 1993

[11] “Internet Usage Statistics,” Miniwatts Marketing Group,

Tech. Rep., Jun. 2011. [Online]. Available:

http://www.internetworldstats.com

Author Profile

Abhay Singh is currently pursuing B-Tech in

Computer Science and Engineering from Galgotias

College of Engineering and Technology, Greater Noida

Alabhya Maheshwari is currently pursuing B-Tech in

Computer Science and Engineering from Galgotias

College of Engineering and Technology, Greater Noida

Dushyant Shukla is currently pursuing B-Tech in

Computer Science and Engineering from Galgotias

College of Engineering and Technology, Greater Noida

Paper ID: SUB153795 2814

http://www.6bone.net/ngtrans
http://www.ipv6.org/
http://www.internetworldstats.com/

