
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Communication between Multiple Resources Using

Arbiter Design

Shital S. Horte, Dr. D. V. Padole

1, 2G. H. Raisoni College of Engineering, Nagpur, India

Abstract: This project describes a important circuit which is called an arbiter to be used in a big designs called switch to communicate

in between multiple resources or users. The design description gives results according to suggested implementation for the circuit. And

this structure i.e. Arbiter calculates the overall performance of the system-on-chip design. At the end, possibilities for addition, revision

and testing structure for an integrated circuit implementation of the arbiter will be considered. The main contribution of this paper is

the design and optimization of arbiter circuit. When Circuits require to be constructed out of several self-timed parts, the arbitration is

frequently required for the asynchronous design. This paper will give design ideas for operatively interfacing to an arbiter and carry out

some research for coding styles for some common arbitration schemes. We consider here the designing of the general purpose arbiter

using M resources to N clients. Here in this paper we are going to see static as well as dynamic arbitration techniques.

Keywords: DSP-Digital Signal Processor, SoC-System on chip, Shared Bus, TDM-Time division Multiplexing

1. Introduction

The arbiters are a vital piece of the scheduler design in which

Grant and Request signals are identically designed. A multi-

client shared bus system uses a arbiter to give decision or

conclusion that which bus client will be getting access to

control the shared bus for each cycle of bus. There are many

systems exist in which a large number of requesters must

approach a common resource. The common resources may

be a shared memory, a state machine, a networking fabric

switch, or a complex computational element. An arbiter is

needed to share the resources or clients among the many

requesters. When considering an arbiter into a design, many

factors must be considered.

Figure 1: Block Diagram for Synchronous arbiter

The interaction between the users and the arbiter must be

proper and suitable for the size and speed of the arbiter.

Even, the coding style used will usually have impact on the

synthesis results. Arbiter works on three processes request,

grant and Accept.

1.1 Process 1 Request Signal

Each input user sends a request to every or requred output

resource.

1.2 Process 2 Grant Signal

In an unmatched output receives any requests, it chooses the

one which appears next in a fixed, round-robin scheduling

technique starting from the highest priority resource. The

output denotes each input whether its request was granted or

not. The pointer to the highest Priority resource of the round-

robin scheduling is incremented (modulo N) to the one

location Beyond the granted input if the grant is accepted in

Process 3 of the first iteration.

1.3 Process 3 Accept Signal

If an unmatched input user receives a grant, it accepts the one

that appears next in a fixed scheduling and round-robin

scheduling starting from the highest priority resource.

2. Arbiters can be design in three ways as

follows

2.1 Arbiter design with one client many resources

Here in this one user will send request for many resources to

have access over it.

2.2 Arbiter design with many client one resources

Here in this type many clients will send request for only one

resource depending on used algorithm or technique one

particular client will get access to that single resource.

2.3 Arbiter design with many client many resources

Arbiter design with many clients many resources: Here in

such type of Arbiter design many clients will send request to

many resources and according to used scheduling techniques

and algorithms the client get grants to various resources. And

these scheduling techniques may be static or dynamic

techniques.

Paper ID: SUB153729 2517

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3. Considerations for Arbiter Design

There are three independent request signals say r1, r2, r3. In

the project four inputs are given as in detailed when the input

is given through the signals like r1, r2, r3, r4 and after the

processing of these signals it shows results in the form of g1,

g2, g3,g4 which are nothing but grant signals. It must be

assumed that the priority of the request signals in the order

r1>r2> r3>r4.In this project the highest priority among the

request signals is r1, then r2, then r3 and lowest priority is r4.

Here in this project highest priority workload given to the

highest priority input called r1, then according to work it is

distributed with another signals. When the high priority

workload is given to the high priority input then when request

will send to the high priority input then acknowledgement

will also send immediately and process on that particular

work get starts on the input. Now here we have to consider

this situation also if input is given to r2 before r1 then first r1

input get access then after completing the task then it will

move to r2 signal i.e. in simple words it will respond after the

r1 execution.

For this duration of access time (i.e. Timeout period) is

programmed through the various independent processors and

the data bus. Duration of execution time to the request (time

out period) plays a very important role for executing the

input request signals. If any signal is given to the input

according to the fixed priority but arbiter does not respond in

given time then this whole process repeat again in certain

time period and same acknowledgement signal is given by

certain time and grant signals get generate in that particular

timeout period then process further starts, otherwise further

process become stop and process of acknowledge and grant

repeat and again arbiter at any instant of time will be in one

of the following states:

 g1

 g2

 g3

 g4

 idle

Figure 2: State diagram of synchronous arbiter

4. Methodology

Arbitration Schemes

The asynchronous arbiter plays an important role in the SoC

shared bus communication. The clients on a SoC bus may

requests simultaneously for the same resource and hence an

arbiter is required to decide which client is granted for bus

access. And for this an arbiter requires arbitration techniques

which are as follows:

4.1 Static Lottery bus Arbitration Scheme

The core of the LOTTERYBUS arbitration scheme is a

probabilistic arbitration algorithm implemented in a lottery

manager for each bus in the SoC communication architecture.

This architecture does not take for granted any fixed

communication topology.

Figure 3: Lottery manager for shared bus

 Hence, the various SoC components must be interconnected

by a flat, system wide bus or an arbitrary network of shared

channels. The lottery manager gathers requests for the access

of the shared bus from one or more clients or masters , which

are (statically or dynamically) allocated to a number of

“lottery tickets” like in above figure 3.This manager which is

shown in above figure pseudo-randomly chooses one of the

engaging clients to be the winner of the lottery, favoring

clients that will have a larger number of tickets, and allows

access to the chosen client for some number of shared bus

cycle. However, to prevent a client from holding or obtaining

the shared bus, a max transfer size is used to limit the

number of bus cycles for which the granted client can utilize

the bus. The inputs to the lottery manager are a set of

requests (one per each client) and the number of tickets held

by each master. The output is a set of grant signals (again one

per each client) that indicate which client is allowed to

transfer data across the bus. The arbitration decision for

shared bus is based on a lottery. If there is only one request, a

lottery results in granting the bus to the that requesting client.

[10,13]

Paper ID: SUB153729 2518

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 4 : Block Diagram for Lottery Bus Architecture

Figure 4 shows block diagram of Lottery Bus architecture.

And it is having below mentioned three basic blocks.

 Lottery Manager

 Comparator

 Pseudo Random Number Generator

4.2 Dynamic Lottery bus Communication Architecture

In this architecture (figure 5), the inputs to the lottery

manager consist of request lines (r0r1r2r3), and the number

of tickets which are possessed by each requesting client that

are created i.e. generated by ticket generator. Ticket

generator generates the ticket like t0, t1, t2, t3. If ticket lines

t0,t1,t2 and t3 are 1,2,3,and 4 then in the immediate clock

cycle, tickets of clients 0,1,2,3 generated by ticket generator

are 2,3,4, and 5. Therefore at each and every lottery, the

lottery manager requires to calculate for each resource

element Ci, the partial sum ∑r j* t j . This must be

implemented using a bit wise AND operation and the tree of

adder, as shown in Fig 4.The final result of summation of

tickets, T=r0t0+r1t1+r2t2+r3t3, defines the range for the

random number to lie which was generated during procedure.

The drawback of this dynamic lottery bus architecture is that

the distribution of the resulting random number is not always

same.[13,14].

Figure 5: Lottery manager architecture with dynamically

varying tickets

5. Results and Analysis

Following figure shows bus arbiter which is designed by
dynamic lottery technique for four Users. Signal r0 r1 r2 r3
are the request signals from users and gnt0 gnt1 gnt2 gnt3 are
the respective user grant signals. Signals t0 t1 t2 t3 represent

the ticket value of the each respective user. Fig. 7,8,9 shows
the simulation results for the Dynamic Lottery bus
architecture.

Figure 6: Simulation Result

Figure 7: Simulation Result

Simulation results presented here in this paper are taken by

Modelsim simulation software tool and found acceptable.

6. Conclusion

This paper presents Lottery bus arbitration technique for the

interfacing with an arbiter and for the high performance SoC.

Best arbitration technique is depends on the size and speed of

the chip that is being built. Here In this paper, we propose the

design of Lottery architecture by using efficient bus

arbitration techniques like lottery bus communication

architecture for high performance. The design of an arbiter

managing handshake between clients and resources. Each

resource is actively reporting for its availability and can be

connected to any of the clients.

Paper ID: SUB153729 2519

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] G. Dent,D.J. “System –on-Chip research leads to

hardware/software co-design degree”, Frontiers in

Educationa Conference,2000. FIE 2000.30th Annual

Volume:2.988.

[2] K. Lahiri, A. Raghunathan, and S. Dey, “Performance

Analysis of Systems with Multi-Channel Communication

Architectures”, International Conference on VLSI

design. Jan 2000,pp,530-537.

[3] K. Lahiri, A. Raghunathan, and S. Dey, “System Level

Performance analysis for designing on-chip

communication architecture”, IEEE Trans. Computer-

Aided Des. Integr. Circuits Syst. Vol. 20. Jun 2001.

[4] K. Lahiri, A. Raghunathan, G, Lakshminaray,

“LOTTERYBUS: A new high-performance

communication architecture for system-on-chip Chang

Hee Pyoun, et. all. “The Efficient Bus Arbitration

Scheme In Soc Environment”, IEEE International

Workshop on System-on-chip, 2003.

[5] K. Lahiri, A. Raghunathan, ,“The LOTTERYBUS on-

chip communication architecture”, IEEE Trans. On

VLSI system, June 2006.

[6] K.A Kettler, et.all, “Modeling Bus Scheduling Policies

for Real Time Systems”, 16th IEEE Real Time Systems

Symposium, 1995.

[7] Vijay D’silva, S. Ramesh, Indian Institute of Technology

Bombay, “Synchronous Protocol Automata: A

Framework for Modelling and Verification of SoC

Communication Architectures”. Proceedings of the

Design, Automation and Test in Europe Conference and

Exhibition (DATE’04) 1530-1591/04 $20.00 © 2004

IEEE.

[8] Hans-Joachim Solberg, “A Multi-Core System-on-Chip

Architecture for Multimedia Signal Processing

Applications”

Proceedings of the design, Automation and Test in

Europe Conference and Exhibition (DATE’03) 1530-

1591/03 © 2003 IEEE.

[9] Dinesh Padole, Deepsheekha , Dr Preeti Bajaj “Dynamic

Lottery Bus Arbiter for Shared Bus System on Chip: A

Design Approach with VHDL” First international

conference on Emerging Trends in Engineering and

Technology 2008 IEEE.

[10] Kanishka Lahiri and Anand Raghunathan, “Lotterybus:

A new high-performance communication architecture for

System-on-chip Designs”, DAC 2001, June 18-22, 2001,

ACM,USA.

[11] Tarun Kumar Gauttam, Rekha Agrawal, Sandhya

Sharma,” Arbiter Design Using Verilog for Switching to

[12] Communicate in Between Multiple Resources”

International Journal of Innovative Technology and

Exploring Engineering (IJITEE) ISSN: 2278-3075,

Volume-3, Issue-3, August 2013.

[13] Kanishka Lahiri and Anand Raghunathan,“Lotterybus: A

new high-performance communication architecture for

System-on-chip Designs”, DAC 2001, June 18-22, 2001,

ACM,USA.

[14] Dinesh Padole et.all, “Design and Performance analysis

of efficient bus arbitration schemes for on-chip shared

bus Multi-processor SoC”, International Journal

IJCSNS, Sept.08, Vol. 8 No. 9 pp. 250-255.

Paper ID: SUB153729 2520

