
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 4, April 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Survey of Hardware Platforms Available for Big 

Data Analytics Using K-means Clustering 

Algorithm 
 

Dr. M. Manimekalai
1
, S. Regha

2
 

 
1Director of MCA, Shrimati Indira Gandhi College, Trichy. India 

 
2Research Scholar, Assistant Professor in Computer Science, Shrimati Indira Gandhi College, Trichy, India 

 

 

Abstract: The Purpose of this paper is to provide an in-depth analysis of different platforms available for performing big data 

analytics. This paper review the different hardware platforms available for big data analytics and assesses the advantages and Negative 

aspects of each of these platforms based on various metrics such as scalability, data I/O rate, fault tolerance, Concurrent processing, 

data size supported and iterative task support. In addition to the hardware, a detailed description of the software frameworks used within 

each of these platforms is also discussed along with their strengths and Weakness. Some of the critical characteristics described here can 

potentially aid the readers in making an informed decision about the right choice of platforms depending on their computational needs. 

Using a star ratings table, a rigorous qualitative comparison between different platforms is also discussed for each of the six 

characteristics that are critical for the algorithms of big data analytics. 
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1. Introduction 
 

Big Data is driving radical changes in traditional data 

analysis platforms. To perform any kind of analysis on such 

voluminous and complex data, scaling up the hardware 

platforms becomes imminent and choosing the right 

hardware/software platforms becomes a crucial decision if 

the user’s requirements are to be satisfied in a reasonable 

amount of time. Researchers have been working on building 

novel data analysis techniques for big data more than ever 

before which has led to the continuous development of many 

different algorithms and platforms. There are several big 

data platforms available with different characteristics and 

choosing the right platform requires an in-depth knowledge 

about the capabilities of all these platforms. we will first 

provide a thorough understanding of all the popular big data 

platforms that are currently being used in practice and 

highlight the advantages and drawbacks of each of them. 

Our work primarily aims at characterizing these concerns 

and focuses on comparing all the platforms based on these 

various optimal characteristics, thus providing some 

guidelines about the suitability of different platforms for 

various kinds of scenarios that arise while performing big 

data analytics in practice. we will provide a case study on 

the implementation of k-means clustering algorithm on 

various big data platforms. The k-means clustering was 

chosen here not only because of its popularity, but also due 

to the various dimensions of complexity involved with the 

algorithm such as being iterative, compute-intensive, and 

having the ability to parallelize some of the computations. 

We will provide a detailed pseudo code of the 

implementation of the k-means clustering algorithm on 

different hardware and software platforms and provide an in-

depth analysis and insights into the algorithmic details. The 

remainder of the paper is organized as follows: the 

fundamental scaling concepts along with the advantages and 

drawbacks of horizontal and vertical scaling are explained in 

Section “Scaling”. Section “Horizontal scaling platforms” 

describes various horizontal scaling platforms including 

peer-to-peer networks, Hadoop and Spark. In section 

“Vertical scaling platforms”, various vertical platforms 

graphics processing units and high performance clusters are 

described. Section “Comparison of different platforms” 

provides thorough comparisons between different platforms 

based on several characteristics that are important in the 

context of big data analytics. Section “How to choose a 

platform for big data analytics?” discusses various details 

about choosing the right platform for a particular big data 

application. A case study on k-means clustering algorithm 

along with its implementation level details on each of the big 

data platform is described in Section “K-means clustering on 

different platforms”. Finally, the “Conclusion” section 

concludes our discussion along with future directions. 

 

1.1 Scaling 

 

Scaling is the ability of the system to adapt to increased 

demands in terms of data processing. To support big data 

processing, different platforms incorporate scaling in 

different forms. From a broader perspective, the big data 

platforms can be categorized into the following two types of 

scaling: 

 

a) Horizontal Scaling: Horizontal scaling involves 

distributing the workload across many servers which may 

be even commodity machines. It is also known as “scale 

out”, where multiple independent machines are added 

together in order to improve the processing capability. 

Typically, multiple instances of the operating system are 

running on separate machines. 

b) Vertical Scaling: Vertical Scaling involves installing 

more processors, more memory and faster hardware, 

typically, within a single server. It is also known as 

“scale up” and it usually involves a single instance of an 

operating system. Compares the advantages and 

drawbacks of horizontal and vertical scaling. While 
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scaling up vertically can make the management and 

installation straight-forward, it limits the scaling ability 

of a platform since it will require substantial financial 

investment. To handle future workloads, one always will 

have to add hardware which is more powerful than the 

current requirements due to limited space and the number 

of expansion slots available in a single machine. This 

forces the user to invest more than what is required for 

his current processing needs. 

 

1.2 Horizontal scaling platforms 

 

Some of the prominent horizontal scale out platforms 

includes peer-to-peer networks and Apache Hadoop. 

Recently, researchers have also been working on developing 

the next generation of horizontal scale out tools such as 

Spark to overcome the limitations of other platforms. We 

will now discuss each of these platforms in more detail in 

this section. 

 

1.3 Peer-to-Peer Networks 

 

Peer-to-Peer networks involve millions of machines 

connected in a network. It is a decentralized and distributed 

network architecture where the nodes in the networks 

(known as peers) serve as well as consume resources. It is 

one of the oldest distributed computing platforms in 

existence. Typically, Message Passing Interface (MPI) is the 

communication scheme used in such a setup to communicate 

and exchange the data between peers. Each node can store 

the data instances and the scale out is practically unlimited 

(can be millions of nodes).MPI, which is the standard 

software communication paradigm used in this network, has 

been in use for several years and is well-established and 

thoroughly debugged. One of the main features of MPI 

includes the state preserving process i.e., processes can live 

as long as the system runs and there is no need to read the 

same data again and again as in the case of other 

frameworks such as MapReduce (explained in section 

“Apache hadoop”). Although MPI appears to be perfect for 

developing algorithms for big data analytics, it has some 

major drawbacks. One of the primary drawbacks is the fault 

intolerance since MPI has no mechanism to handle faults. 

When used on top of peer-to-peer networks, which is a 

completely unreliable hardware, a single node failure can 

cause the entire system to shut down. Users have to 

implement some kind of fault tolerance mechanism within 

the program to avoid such unfortunate situations. With other 

frameworks such as Hadoop (that are robust to fault 

tolerance) becoming widely popular, MPI is not being 

widely used anymore. 

 

1.4 Apache hadoop 

 

Apache Hadoop is an open source framework for storing and 

processing large datasets using clusters of commodity 

hardware. Hadoop is designed to scale up to hundreds and 

even thousands of nodes and is also highly fault tolerant. 

The various components of a Hadoop Stack are shown in 

Figure. The Hadoop platform contains the following two 

important components: 

 

Distributed File System (HDFS) is a distributed file system 

that is used to store data across cluster of commodity 

machines while providing high availability and fault 

tolerance. Hadoop YARN is a resource management layer 

and schedules the jobs across the cluster. 

 
Hadoop Stack showing different components 

 

2. MapReduce 
 

The programming model used in Hadoop is MapReduce 

which was proposed by Dean and Ghemawat at Google. 

MapReduce is the basic data processing scheme used in 

Hadoop which includes breaking the entire task into two 

parts, known as mappers and reducers. At a high-level, 

mappers read the data from HDFS, process it and generate 

some intermediate results to the reducers. Reducers are used 

to aggregate the intermediate results to generate the final 

output which is again written to HDFS. A typical Hadoop 

job involves running several mappers and reducers across 

different nodes in the cluster.  

 

2.1 MapReduce wrappers 

 

A certain set of wrappers are currently being developed for 

MapReduce. These wrappers can provide a better control 

over the MapReduce code and aid in the source code 

development. The following wrappers are being widely used 

in combination with MapReduce. 

 

Apache Pig is a SQL-like environment developed at Yahoo 

is being used by many organizations like Yahoo, Twitter, 

AOL, LinkedIn etc. Hive is another MapReduce wrapper 

developed by Facebook. In addition to these wrappers, some 

researchers have also developed scalable machine learning 

libraries such as Mahout using MapReduce paradigm. 

 

2.2 Drawbacks of MapReduce 

 

One of the major drawbacks of MapReduce is its 

inefficiency in running iterative algorithms. MapReduce is 

not designed for iterative processes. Mappers read the same 

data again and again from the disk.  

 

Spark: next generation data analysis paradigm 

Spark is a next generation paradigm for big data processing 

developed by researchers at the University of California at 

Berkeley. It is an alternative to Hadoop which is designed to 

overcome the disk I/O limitations and improve the 

performance of earlier systems. The major feature of Spark 

that makes it unique is its ability to perform in-memory 

computations. It allows the data to be cached in memory, 

thus eliminating the Hadoop’s disk overhead limitation for 

iterative tasks. Spark is a general engine for large-scale data 
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processing that supports Java, Scala and Python and for 

certain tasks it is tested to be up to 100× faster than Hadoop 

MapReduce when the data can fit in the memory, and up to 

10× faster when data resides on the disk. It can run on 

Hadoop Yarn manager and can read data from HDFS. This 

makes it extremely versatile to run on different systems. 

 

3. Berkeley data analytics stack (BDAS) 
 

The Spark developers have also proposed an entire data 

processing stack called Berkeley Data Analytics Stack 

(BDAS). At the lowest level of this stack, there is a 

component called Tachyon which is based on HDFS. It is a 

fault tolerant distributed file system which enables file 

sharing at memory-speed (data I/O speed comparable to 

system memory) across a cluster. It works with cluster 

frameworks such as Spark and MapReduce.  

 

 
 

An illustration of Berkeley Data Analysis Stack and its 

various components 
The major advantage of Tachyon over Hadoop HDFS is its 

high performance which is achieved by using memory more 

aggressively. Tachyon can detect the frequently read files 

and cache them in memory thus minimizing the disk access 

by different jobs/queries  

 

3.1 Vertical scaling platforms 

 

The most popular vertical scale up paradigms are High 

Performance Computing Clusters (HPC), Multicore 

processors, Graphics Processing Unit (GPU) and Field 

Programmable Gate Arrays (FPGA). We describe each of 

these platforms and their capabilities in the following 

sections. 

 

3.2 High performance computing (HPC) clusters 

 

HPC clusters , also called as blades or supercomputers, are 

machines with thousands of cores. They can have a different 

variety of disk organization, cache, communication 

mechanism etc. depending upon the user requirement. These 

systems use well-built powerful hardware which is 

optimized for speed and throughput. Because of the top 

quality high-end hardware, fault tolerance in such systems is 

not problematic since hardware failures are extremely rare 

 

3.3 Graphics processing unit (GPU) 

 

Graphics Processing Unit (GPUs) is a specialized hardware 

designed to accelerate the creation of images in a frame 

buffer intended for display output .Until the past few years, 

GPUs were primarily used for graphical operations such as 

video and image editing, accelerating graphics-related 

processing etc. However, due to their massively parallel 

architecture, recent developments in GPU hardware and 

related programming frameworks have given rise to GPGPU 

(general-purpose computing on graphics processing units) . 

GPU has large number of processing cores (typically around 

2500+ to date) as compared to a multicore CPU.  

 

3.4 Field programmable gate arrays (FPGA) 

FPGAs are highly specialized hardware units which are 

custom-built for specific applications .FPGAs can be highly 

optimized for speed and can be orders of magnitude faster 

compared to other platforms for certain applications. They 

are programmed using Hardware descriptive language 

(HDL). Due to customized hardware, the development cost 

is typically much higher compared to other platforms.  

 

4. Comparison of Different Platforms 
 

Comparison of different platforms using the based on the 

following characteristics: scalability, data I/O performance, 

fault tolerance, Concurrent processing, data size support and 

the support for iterative tasks. Clearly, the first three 

characteristics are system/platform dependent and last three 

are application/algorithm dependent. Scalability: Scalability 

is defined as the ability of the system to handle growing 

amount of work load in a capable manner or its ability to be 

enlarged to accommodate that growth. In our case, 

scalability is considered to be the ability to add more 

hardware (scale up or scale out) to improve the capacity and 

performance of a system. 

 

Data I/O performance: Data I/O performance refers to the 

rate at which the data is transferred to/from a peripheral 

device. In the context of big data analytics, this can be 

viewed as the rate at which the data is read and written to the 

memory (or disk) or the data transfer rate between the nodes 

in a cluster. GPU and FPGA receive 5 stars since they have 

high throughput memory and the data I/O operations are 

extremely fast. The current generation GPUs are available 

with DDR5 memory which is many times faster than the 

DDR3 system memory. HPC clusters and Multicore will fall 

next in this category with 4 stars. These systems usually 

make use of system memory which is reasonably faster 

compared to disk access. Since HPC clusters and Multicore 

are usually single machines, network access is not a 

bottleneck. 

 

Fault tolerance: Fault tolerance is the characteristic of a 

system to continue operating properly in the event of a 

failure of one or more components. Since we created this 

table with an intent to compare the platforms of similar 

capacity, we additionally consider the chances of failure in a 

system and give a high rating if system failures are 

extremely rare even though it may not have any fault 

tolerance mechanism. This enables us to make an unbiased 

comparison between unreliable systems with fault tolerance 

and reliable hardware with not so good fault tolerance 

mechanism. 

 

Concurrent processing: Real-time processing of a system 

is its ability to process the data and produce the results 

Paper ID: SUB153724 2817



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 4, April 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

strictly within certain time constrains. Real-time responses 

are often delivered in the order of milliseconds and 

sometimes microseconds depending on the application and 

the user requirements. 

 

Data size supported: Data size support is the size of the 

dataset that a system can process and handle efficiently. In 

this category, peer-to-peer networks will receive 5 stars 

since they can handle even petabytes of data and can 

theoretically scale out to unlimited number of nodes. 

Multicore, GPU and FPGA are not well suited for 

processing large data sets. All these systems get 2 stars for 

the limited size of the data that they can support. GPUs have 

a limited on-board memory in the order of several gigabytes. 

Similarly, Multicore systems rely on system memory which 

can only be up to hundreds of gigabytes. 

 

Iterative tasks support: This is the ability of a system to 

efficiently support iterative tasks. Since many of the data 

analysis tasks and algorithms are iterative in nature, it is an 

important metric to compare different platforms, especially 

in the context of big data analytics. 

 

K-means clustering on different platforms: In order to 

provide more insights into the analytics algorithms on 

different platforms, we will demonstrate the implementation 

of the K-Means clustering algorithm on these platforms 

presented so far. The choice of the K-Means algorithm was 

made not only because of its popularity and wide usage ,but 

also due to some of its critical elements that can demonstrate 

the ability of various platforms in handling other analytics 

procedures. Some of these characteristics include: Iterative 

nature of the algorithm wherein the current iteration results 

are needed before proceeding to the next iteration. Compute-

intensive task of calculating the centroids from a set of 

datapoints.Aggregation of the local results to obtain a global 

solution when the algorithm is parallelized.It should be 

noted that many of the analytics algorithms share atleast 

some of these characteristics. Hence, it is important to 

understand how these characteristics of K-means clustering 

algorithm are being handled using different platforms. 

Figure explains the different steps involved in a basic K-

means clustering algorithm. The algorithm starts by 

initializing the cluster centroids. In the next step, each data 

point is associated with closest centroid and in the third step, 

the centroids are recalculated for all the associated data 

instances for a given cluster. The second and third steps are 

repeated until the centroids converge (or after a pre-defined 

number of iterations). 

 

 
The pseudocode of the K-means clustering algorithm: 

We will now discuss the implementation details of this 

algorithm on different platforms to get a deeper 

understanding of how such iterative algorithms are modified 

to fit different communication schemes. 

 

K-means on MapReduce: MapReduce is not an ideal 

choice for iterative algorithms such as K-Means clustering. 

This will be clearly shown in this section as we explain the 

K-Means clustering using MapReduce. The pseudo code for 

mapper and reducer functions for k-means clustering 

algorithm is given in Figure. Basically, mappers read the 

data and the centroids from the disk. These mappers then 

assign data instances to clusters. Once every mapper has 

completed their operation, reducers compute the new 

centroids by calculating the average of data points present in 

each cluster. Now, these new centroids are written to the 

disk. These centroids are then read by the mappers for the 

next iteration and the entire process is repeated until the 

algorithm converges. This shows the disk access bottleneck 

of MapReduce for iterative tasks as the data has to be 

written to the disk after every iteration. The first part shows 

the map function and the second part shows the reduce 

function.  

 

K-means on MPI:MPI typically have a master–slave setting 

and the data is usually distributed among the slaves.. In the 

second step, the master broadcasts the centroids to the 

slaves. Next, the slaves assign data instances to the clusters 

and compute new local centroids which are then sent back to 

the master. Master will then compute new global centroids 

by aggregating local centroids weighted by local cluster 

sizes. These new global centroids are then again broadcasted 

back to the slaves for the next iteration of K-means. In this 

manner, the process continues until the centroids converge. 

In this implementation, the data is not written to the disk but 

the primary bottleneck lies in the communication when MPI 

is used with peer-to-peer networks since aggregation is 

costly and the network performance will be low. 

 

K-means on GPU: GPU has a large number of processing 

cores. Hence, in order to effectively utilize all the cores, the 

algorithm will need to be modified cautiously. Figure 7 

shows the pseudo code of K-means using GPU. In the case 

of K-means, each processor is given a small task (assigning 

a data vector to a centroid). Also, a single core in a GPU is 

not very powerful which is why the centroid recalculation is 

done on the CPU. The centroids are uploaded to the shared 

memory of the GPU and the data points are partitioned and 

uploaded into each multiprocessor. These multiprocessors 

work on one data vector at a time and associate it with the 

closest centroid. Once all the points are assigned to the 

centroids, CPU recalculates the centroids and again will 

upload the new centroids to the multiprocessors. This 

process is repeated until the centroids converge or until a 

pre-defined number of iterations are completed. Another 

aspect to consider here is the density of the data. If the data 

is sparse, many multiprocessors will stall due to scarcity of 

data vectors to compute, which will eventually degrade the 

performance. In a nutshell, the performance of GPUs will be 

the best when the data is relatively denser and when the 

algorithm is carefully modified to take advantage of 

processing cores.  

 

K-means on other platforms: K-means implementation on 

Spark is similar to the MapReduce-based implementation 
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described in Section K-means on MapReduce. Instead of 

writing the global centroids to the disk, they are written into 

the memory which speeds up the processing and reduces the 

disk I/O overhead. In addition, the data will be loaded into 

the system memory in order to provide faster access. The K-

means clustering on CPU involves multithreading where 

each thread associates a data vector to a centroid and finally 

the centroids are recomputed for the next iteration. On the 

other hand, K-means implementation on FPGA depends 

upon the FPGA architecture used and may differ 

significantly depending on the type of FPGA being used. 

 

5. Conclusion and Future Directions 
 

This paper surveys various data processing platforms that 

are currently available and discusses the advantages and 

drawbacks for each of them. Several details on each of these 

hardware platforms along with some of the popular software 

frameworks such as Hadoop and Spark are also provided. A 

thorough comparison between different platforms based on 

some of the important characteristics (such as scalability and 

real-time processing) has also been made through star based 

ratings. The widely used k-means clustering algorithm was 

chosen as a case study to demonstrate the strengths and 

weaknesses of different platforms. Some of the important 

characteristics of k-means algorithm such as its iterative 

nature, compute-intensive calculations and aggregating local 

results in a parallel setting makes it an ideal choice to better 

understand the various big data platforms. It should be noted 

that many of the analytical algorithms share these 

characteristics as well. This article provides the readers with 

a comprehensive review of different platforms which can 

potentially aid them in making the right decisions in 

choosing the platforms based on their data/computational 

requirements. 

 

The future work involves investigating more algorithms 

such as decision trees, nearest neighbor, page rank etc. over 

different platforms. For empirical evaluation, different 

experiments involving varying data size and response times 

can be performed over various platforms for different 

algorithms. Through such an analysis we will get valuable 

insights which can be useful in many practical and research 

applications. One other important direction of research will 

be to choose the right platform for a particular application. 

Based on the specific application needs, one can tailor their 

platform specific factors such as the amount of hard disk, 

memory and the speed required for optimally running the 

application. This study will provide a first step to analyze 

the effectiveness of each of the platforms and especially the 

strengths of them for handling real-world applications. 

Another direction will be to investigate the possibility of 

combining multiple platforms to solve a particular 

application problem. For example, attempting to merge the 

horizontal scaling platforms such as Hadoop with vertical 

scaling platforms such as GPUs is also gaining some recent 

attention. This involves several non-trivial tasks not only at 

the platform level but also becomes challenging to 

decompose the algorithm into parts and running various 

algorithmic components in various platforms. A 

combination of platforms might be more suitable for a 

particular algorithm and can potentially resolve the issue of 

making it highly scalable (through horizontal scaling) as 

well as performing real-time analysis (through vertical 

scaling). 
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