
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Survey of Hardware Platforms Available for Big

Data Analytics Using K-means Clustering

Algorithm

Dr. M. Manimekalai
1
, S. Regha

2

1Director of MCA, Shrimati Indira Gandhi College, Trichy. India

2Research Scholar, Assistant Professor in Computer Science, Shrimati Indira Gandhi College, Trichy, India

Abstract: The Purpose of this paper is to provide an in-depth analysis of different platforms available for performing big data

analytics. This paper review the different hardware platforms available for big data analytics and assesses the advantages and Negative

aspects of each of these platforms based on various metrics such as scalability, data I/O rate, fault tolerance, Concurrent processing,

data size supported and iterative task support. In addition to the hardware, a detailed description of the software frameworks used within

each of these platforms is also discussed along with their strengths and Weakness. Some of the critical characteristics described here can

potentially aid the readers in making an informed decision about the right choice of platforms depending on their computational needs.

Using a star ratings table, a rigorous qualitative comparison between different platforms is also discussed for each of the six

characteristics that are critical for the algorithms of big data analytics.

Keywords: Big data, MapReduce, graphics processing units, scalability, big data analytics, big data Platform,k-means clustering.

1. Introduction

Big Data is driving radical changes in traditional data

analysis platforms. To perform any kind of analysis on such

voluminous and complex data, scaling up the hardware

platforms becomes imminent and choosing the right

hardware/software platforms becomes a crucial decision if

the user’s requirements are to be satisfied in a reasonable

amount of time. Researchers have been working on building

novel data analysis techniques for big data more than ever

before which has led to the continuous development of many

different algorithms and platforms. There are several big

data platforms available with different characteristics and

choosing the right platform requires an in-depth knowledge

about the capabilities of all these platforms. we will first

provide a thorough understanding of all the popular big data

platforms that are currently being used in practice and

highlight the advantages and drawbacks of each of them.

Our work primarily aims at characterizing these concerns

and focuses on comparing all the platforms based on these

various optimal characteristics, thus providing some

guidelines about the suitability of different platforms for

various kinds of scenarios that arise while performing big

data analytics in practice. we will provide a case study on

the implementation of k-means clustering algorithm on

various big data platforms. The k-means clustering was

chosen here not only because of its popularity, but also due

to the various dimensions of complexity involved with the

algorithm such as being iterative, compute-intensive, and

having the ability to parallelize some of the computations.

We will provide a detailed pseudo code of the

implementation of the k-means clustering algorithm on

different hardware and software platforms and provide an in-

depth analysis and insights into the algorithmic details. The

remainder of the paper is organized as follows: the

fundamental scaling concepts along with the advantages and

drawbacks of horizontal and vertical scaling are explained in

Section “Scaling”. Section “Horizontal scaling platforms”

describes various horizontal scaling platforms including

peer-to-peer networks, Hadoop and Spark. In section

“Vertical scaling platforms”, various vertical platforms

graphics processing units and high performance clusters are

described. Section “Comparison of different platforms”

provides thorough comparisons between different platforms

based on several characteristics that are important in the

context of big data analytics. Section “How to choose a

platform for big data analytics?” discusses various details

about choosing the right platform for a particular big data

application. A case study on k-means clustering algorithm

along with its implementation level details on each of the big

data platform is described in Section “K-means clustering on

different platforms”. Finally, the “Conclusion” section

concludes our discussion along with future directions.

1.1 Scaling

Scaling is the ability of the system to adapt to increased

demands in terms of data processing. To support big data

processing, different platforms incorporate scaling in

different forms. From a broader perspective, the big data

platforms can be categorized into the following two types of

scaling:

a) Horizontal Scaling: Horizontal scaling involves

distributing the workload across many servers which may

be even commodity machines. It is also known as “scale

out”, where multiple independent machines are added

together in order to improve the processing capability.

Typically, multiple instances of the operating system are

running on separate machines.

b) Vertical Scaling: Vertical Scaling involves installing

more processors, more memory and faster hardware,

typically, within a single server. It is also known as

“scale up” and it usually involves a single instance of an

operating system. Compares the advantages and

drawbacks of horizontal and vertical scaling. While

Paper ID: SUB153724 2815

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

scaling up vertically can make the management and

installation straight-forward, it limits the scaling ability

of a platform since it will require substantial financial

investment. To handle future workloads, one always will

have to add hardware which is more powerful than the

current requirements due to limited space and the number

of expansion slots available in a single machine. This

forces the user to invest more than what is required for

his current processing needs.

1.2 Horizontal scaling platforms

Some of the prominent horizontal scale out platforms

includes peer-to-peer networks and Apache Hadoop.

Recently, researchers have also been working on developing

the next generation of horizontal scale out tools such as

Spark to overcome the limitations of other platforms. We

will now discuss each of these platforms in more detail in

this section.

1.3 Peer-to-Peer Networks

Peer-to-Peer networks involve millions of machines

connected in a network. It is a decentralized and distributed

network architecture where the nodes in the networks

(known as peers) serve as well as consume resources. It is

one of the oldest distributed computing platforms in

existence. Typically, Message Passing Interface (MPI) is the

communication scheme used in such a setup to communicate

and exchange the data between peers. Each node can store

the data instances and the scale out is practically unlimited

(can be millions of nodes).MPI, which is the standard

software communication paradigm used in this network, has

been in use for several years and is well-established and

thoroughly debugged. One of the main features of MPI

includes the state preserving process i.e., processes can live

as long as the system runs and there is no need to read the

same data again and again as in the case of other

frameworks such as MapReduce (explained in section

“Apache hadoop”). Although MPI appears to be perfect for

developing algorithms for big data analytics, it has some

major drawbacks. One of the primary drawbacks is the fault

intolerance since MPI has no mechanism to handle faults.

When used on top of peer-to-peer networks, which is a

completely unreliable hardware, a single node failure can

cause the entire system to shut down. Users have to

implement some kind of fault tolerance mechanism within

the program to avoid such unfortunate situations. With other

frameworks such as Hadoop (that are robust to fault

tolerance) becoming widely popular, MPI is not being

widely used anymore.

1.4 Apache hadoop

Apache Hadoop is an open source framework for storing and

processing large datasets using clusters of commodity

hardware. Hadoop is designed to scale up to hundreds and

even thousands of nodes and is also highly fault tolerant.

The various components of a Hadoop Stack are shown in

Figure. The Hadoop platform contains the following two

important components:

Distributed File System (HDFS) is a distributed file system

that is used to store data across cluster of commodity

machines while providing high availability and fault

tolerance. Hadoop YARN is a resource management layer

and schedules the jobs across the cluster.

Hadoop Stack showing different components

2. MapReduce

The programming model used in Hadoop is MapReduce

which was proposed by Dean and Ghemawat at Google.

MapReduce is the basic data processing scheme used in

Hadoop which includes breaking the entire task into two

parts, known as mappers and reducers. At a high-level,

mappers read the data from HDFS, process it and generate

some intermediate results to the reducers. Reducers are used

to aggregate the intermediate results to generate the final

output which is again written to HDFS. A typical Hadoop

job involves running several mappers and reducers across

different nodes in the cluster.

2.1 MapReduce wrappers

A certain set of wrappers are currently being developed for

MapReduce. These wrappers can provide a better control

over the MapReduce code and aid in the source code

development. The following wrappers are being widely used

in combination with MapReduce.

Apache Pig is a SQL-like environment developed at Yahoo

is being used by many organizations like Yahoo, Twitter,

AOL, LinkedIn etc. Hive is another MapReduce wrapper

developed by Facebook. In addition to these wrappers, some

researchers have also developed scalable machine learning

libraries such as Mahout using MapReduce paradigm.

2.2 Drawbacks of MapReduce

One of the major drawbacks of MapReduce is its

inefficiency in running iterative algorithms. MapReduce is

not designed for iterative processes. Mappers read the same

data again and again from the disk.

Spark: next generation data analysis paradigm

Spark is a next generation paradigm for big data processing

developed by researchers at the University of California at

Berkeley. It is an alternative to Hadoop which is designed to

overcome the disk I/O limitations and improve the

performance of earlier systems. The major feature of Spark

that makes it unique is its ability to perform in-memory

computations. It allows the data to be cached in memory,

thus eliminating the Hadoop’s disk overhead limitation for

iterative tasks. Spark is a general engine for large-scale data

Paper ID: SUB153724 2816

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

processing that supports Java, Scala and Python and for

certain tasks it is tested to be up to 100× faster than Hadoop

MapReduce when the data can fit in the memory, and up to

10× faster when data resides on the disk. It can run on

Hadoop Yarn manager and can read data from HDFS. This

makes it extremely versatile to run on different systems.

3. Berkeley data analytics stack (BDAS)

The Spark developers have also proposed an entire data

processing stack called Berkeley Data Analytics Stack

(BDAS). At the lowest level of this stack, there is a

component called Tachyon which is based on HDFS. It is a

fault tolerant distributed file system which enables file

sharing at memory-speed (data I/O speed comparable to

system memory) across a cluster. It works with cluster

frameworks such as Spark and MapReduce.

An illustration of Berkeley Data Analysis Stack and its

various components
The major advantage of Tachyon over Hadoop HDFS is its

high performance which is achieved by using memory more

aggressively. Tachyon can detect the frequently read files

and cache them in memory thus minimizing the disk access

by different jobs/queries

3.1 Vertical scaling platforms

The most popular vertical scale up paradigms are High

Performance Computing Clusters (HPC), Multicore

processors, Graphics Processing Unit (GPU) and Field

Programmable Gate Arrays (FPGA). We describe each of

these platforms and their capabilities in the following

sections.

3.2 High performance computing (HPC) clusters

HPC clusters , also called as blades or supercomputers, are

machines with thousands of cores. They can have a different

variety of disk organization, cache, communication

mechanism etc. depending upon the user requirement. These

systems use well-built powerful hardware which is

optimized for speed and throughput. Because of the top

quality high-end hardware, fault tolerance in such systems is

not problematic since hardware failures are extremely rare

3.3 Graphics processing unit (GPU)

Graphics Processing Unit (GPUs) is a specialized hardware

designed to accelerate the creation of images in a frame

buffer intended for display output .Until the past few years,

GPUs were primarily used for graphical operations such as

video and image editing, accelerating graphics-related

processing etc. However, due to their massively parallel

architecture, recent developments in GPU hardware and

related programming frameworks have given rise to GPGPU

(general-purpose computing on graphics processing units) .

GPU has large number of processing cores (typically around

2500+ to date) as compared to a multicore CPU.

3.4 Field programmable gate arrays (FPGA)

FPGAs are highly specialized hardware units which are

custom-built for specific applications .FPGAs can be highly

optimized for speed and can be orders of magnitude faster

compared to other platforms for certain applications. They

are programmed using Hardware descriptive language

(HDL). Due to customized hardware, the development cost

is typically much higher compared to other platforms.

4. Comparison of Different Platforms

Comparison of different platforms using the based on the

following characteristics: scalability, data I/O performance,

fault tolerance, Concurrent processing, data size support and

the support for iterative tasks. Clearly, the first three

characteristics are system/platform dependent and last three

are application/algorithm dependent. Scalability: Scalability

is defined as the ability of the system to handle growing

amount of work load in a capable manner or its ability to be

enlarged to accommodate that growth. In our case,

scalability is considered to be the ability to add more

hardware (scale up or scale out) to improve the capacity and

performance of a system.

Data I/O performance: Data I/O performance refers to the

rate at which the data is transferred to/from a peripheral

device. In the context of big data analytics, this can be

viewed as the rate at which the data is read and written to the

memory (or disk) or the data transfer rate between the nodes

in a cluster. GPU and FPGA receive 5 stars since they have

high throughput memory and the data I/O operations are

extremely fast. The current generation GPUs are available

with DDR5 memory which is many times faster than the

DDR3 system memory. HPC clusters and Multicore will fall

next in this category with 4 stars. These systems usually

make use of system memory which is reasonably faster

compared to disk access. Since HPC clusters and Multicore

are usually single machines, network access is not a

bottleneck.

Fault tolerance: Fault tolerance is the characteristic of a

system to continue operating properly in the event of a

failure of one or more components. Since we created this

table with an intent to compare the platforms of similar

capacity, we additionally consider the chances of failure in a

system and give a high rating if system failures are

extremely rare even though it may not have any fault

tolerance mechanism. This enables us to make an unbiased

comparison between unreliable systems with fault tolerance

and reliable hardware with not so good fault tolerance

mechanism.

Concurrent processing: Real-time processing of a system

is its ability to process the data and produce the results

Paper ID: SUB153724 2817

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

strictly within certain time constrains. Real-time responses

are often delivered in the order of milliseconds and

sometimes microseconds depending on the application and

the user requirements.

Data size supported: Data size support is the size of the

dataset that a system can process and handle efficiently. In

this category, peer-to-peer networks will receive 5 stars

since they can handle even petabytes of data and can

theoretically scale out to unlimited number of nodes.

Multicore, GPU and FPGA are not well suited for

processing large data sets. All these systems get 2 stars for

the limited size of the data that they can support. GPUs have

a limited on-board memory in the order of several gigabytes.

Similarly, Multicore systems rely on system memory which

can only be up to hundreds of gigabytes.

Iterative tasks support: This is the ability of a system to

efficiently support iterative tasks. Since many of the data

analysis tasks and algorithms are iterative in nature, it is an

important metric to compare different platforms, especially

in the context of big data analytics.

K-means clustering on different platforms: In order to

provide more insights into the analytics algorithms on

different platforms, we will demonstrate the implementation

of the K-Means clustering algorithm on these platforms

presented so far. The choice of the K-Means algorithm was

made not only because of its popularity and wide usage ,but

also due to some of its critical elements that can demonstrate

the ability of various platforms in handling other analytics

procedures. Some of these characteristics include: Iterative

nature of the algorithm wherein the current iteration results

are needed before proceeding to the next iteration. Compute-

intensive task of calculating the centroids from a set of

datapoints.Aggregation of the local results to obtain a global

solution when the algorithm is parallelized.It should be

noted that many of the analytics algorithms share atleast

some of these characteristics. Hence, it is important to

understand how these characteristics of K-means clustering

algorithm are being handled using different platforms.

Figure explains the different steps involved in a basic K-

means clustering algorithm. The algorithm starts by

initializing the cluster centroids. In the next step, each data

point is associated with closest centroid and in the third step,

the centroids are recalculated for all the associated data

instances for a given cluster. The second and third steps are

repeated until the centroids converge (or after a pre-defined

number of iterations).

The pseudocode of the K-means clustering algorithm:

We will now discuss the implementation details of this

algorithm on different platforms to get a deeper

understanding of how such iterative algorithms are modified

to fit different communication schemes.

K-means on MapReduce: MapReduce is not an ideal

choice for iterative algorithms such as K-Means clustering.

This will be clearly shown in this section as we explain the

K-Means clustering using MapReduce. The pseudo code for

mapper and reducer functions for k-means clustering

algorithm is given in Figure. Basically, mappers read the

data and the centroids from the disk. These mappers then

assign data instances to clusters. Once every mapper has

completed their operation, reducers compute the new

centroids by calculating the average of data points present in

each cluster. Now, these new centroids are written to the

disk. These centroids are then read by the mappers for the

next iteration and the entire process is repeated until the

algorithm converges. This shows the disk access bottleneck

of MapReduce for iterative tasks as the data has to be

written to the disk after every iteration. The first part shows

the map function and the second part shows the reduce

function.

K-means on MPI:MPI typically have a master–slave setting

and the data is usually distributed among the slaves.. In the

second step, the master broadcasts the centroids to the

slaves. Next, the slaves assign data instances to the clusters

and compute new local centroids which are then sent back to

the master. Master will then compute new global centroids

by aggregating local centroids weighted by local cluster

sizes. These new global centroids are then again broadcasted

back to the slaves for the next iteration of K-means. In this

manner, the process continues until the centroids converge.

In this implementation, the data is not written to the disk but

the primary bottleneck lies in the communication when MPI

is used with peer-to-peer networks since aggregation is

costly and the network performance will be low.

K-means on GPU: GPU has a large number of processing

cores. Hence, in order to effectively utilize all the cores, the

algorithm will need to be modified cautiously. Figure 7

shows the pseudo code of K-means using GPU. In the case

of K-means, each processor is given a small task (assigning

a data vector to a centroid). Also, a single core in a GPU is

not very powerful which is why the centroid recalculation is

done on the CPU. The centroids are uploaded to the shared

memory of the GPU and the data points are partitioned and

uploaded into each multiprocessor. These multiprocessors

work on one data vector at a time and associate it with the

closest centroid. Once all the points are assigned to the

centroids, CPU recalculates the centroids and again will

upload the new centroids to the multiprocessors. This

process is repeated until the centroids converge or until a

pre-defined number of iterations are completed. Another

aspect to consider here is the density of the data. If the data

is sparse, many multiprocessors will stall due to scarcity of

data vectors to compute, which will eventually degrade the

performance. In a nutshell, the performance of GPUs will be

the best when the data is relatively denser and when the

algorithm is carefully modified to take advantage of

processing cores.

K-means on other platforms: K-means implementation on

Spark is similar to the MapReduce-based implementation

Paper ID: SUB153724 2818

http://www.journalofbigdata.com/content/2/1/8/figure/F7

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

described in Section K-means on MapReduce. Instead of

writing the global centroids to the disk, they are written into

the memory which speeds up the processing and reduces the

disk I/O overhead. In addition, the data will be loaded into

the system memory in order to provide faster access. The K-

means clustering on CPU involves multithreading where

each thread associates a data vector to a centroid and finally

the centroids are recomputed for the next iteration. On the

other hand, K-means implementation on FPGA depends

upon the FPGA architecture used and may differ

significantly depending on the type of FPGA being used.

5. Conclusion and Future Directions

This paper surveys various data processing platforms that

are currently available and discusses the advantages and

drawbacks for each of them. Several details on each of these

hardware platforms along with some of the popular software

frameworks such as Hadoop and Spark are also provided. A

thorough comparison between different platforms based on

some of the important characteristics (such as scalability and

real-time processing) has also been made through star based

ratings. The widely used k-means clustering algorithm was

chosen as a case study to demonstrate the strengths and

weaknesses of different platforms. Some of the important

characteristics of k-means algorithm such as its iterative

nature, compute-intensive calculations and aggregating local

results in a parallel setting makes it an ideal choice to better

understand the various big data platforms. It should be noted

that many of the analytical algorithms share these

characteristics as well. This article provides the readers with

a comprehensive review of different platforms which can

potentially aid them in making the right decisions in

choosing the platforms based on their data/computational

requirements.

The future work involves investigating more algorithms

such as decision trees, nearest neighbor, page rank etc. over

different platforms. For empirical evaluation, different

experiments involving varying data size and response times

can be performed over various platforms for different

algorithms. Through such an analysis we will get valuable

insights which can be useful in many practical and research

applications. One other important direction of research will

be to choose the right platform for a particular application.

Based on the specific application needs, one can tailor their

platform specific factors such as the amount of hard disk,

memory and the speed required for optimally running the

application. This study will provide a first step to analyze

the effectiveness of each of the platforms and especially the

strengths of them for handling real-world applications.

Another direction will be to investigate the possibility of

combining multiple platforms to solve a particular

application problem. For example, attempting to merge the

horizontal scaling platforms such as Hadoop with vertical

scaling platforms such as GPUs is also gaining some recent

attention. This involves several non-trivial tasks not only at

the platform level but also becomes challenging to

decompose the algorithm into parts and running various

algorithmic components in various platforms. A

combination of platforms might be more suitable for a

particular algorithm and can potentially resolve the issue of

making it highly scalable (through horizontal scaling) as

well as performing real-time analysis (through vertical

scaling).

References

[1] Agneeswaran VS, Tonpay P, Tiwary J: Paradigms for

realizing machine learning algorithms. Big Data

2013, 1(4):207-214. Zaharia M, Chowdhury M,

Franklin MJ, Shenker S, Spark SI: Cluster Computing

with Working Sets. Proceedings of the 2nd USENIX

Conference on Hot Topics in Cloud Computing 2010,

10-10.

[2] Milojicic DS, Kalogeraki V, Lukose R, Nagaraja K,

Pruyne J, Richard B, Rollins S, Xu Z: Peer-to-peer

computing. Technical Report HPL-2002-57, HP Labs.

2002.

[3] Steinmetz R, Wehrle K: Peer-to-Peer Systems and

Applications. Springer Berlin, Heidelberg; 2005.

[4] Sievert O, Casanova H: A simple MPI process

swapping architecture for iterative applications Int J

High Perform Comput Appl 2004, 18(3):341-352.

Borthakur D: HDFS architecture guide. HADOOP

APACHE PROJECT. 2008.

[5] Vavilapalli VK, Murthy AC, Douglas C, Agarwal S,

Konar M, Evans R, Graves T, Lowe J, Shah H, Seth S:

Apache hadoop yarn: Yet another resource

negotiator. Proceedings of the 4th annual Symposium

on Cloud Computing 2013, 5.

[6] Dean J, Ghemawat S: MapReduce: simplified data

processing on large clusters. Commun ACM 2008,

51(1):107-113. Lee K-H, Lee Y-J, Choi H, Chung YD,

Moon B: Parallel data processing with MapReduce:

a survey. ACM SIGMOD Record 2012, 40(4):11-20.

Proceedings of the VLDB Endowment 2010, 3(1–

2):285-296. Ekanayake J, Pallickara S, Fox G:

Mapreduce for data intensive scientific analyses.

Proceesings of IEEE Fourth International Conference

on eScience 2008, 277-284.

[7] Palit I, Reddy CK: Scalable and parallel boosting with

MapReduce. IEEE Trans Knowl Data Eng 2012,

24(10):1904-1916. Ekanayake J, Li H, Zhang B,

Gunarathne T, Bae S-H, Qiu J, Fox G (2010) Twister: a

runtime for iterative mapreduce. In: Proceedings of the

19th ACM International Symposium on High

Performance Distributed Computing. ACM, pp 810–818

[8] Zhang Y, Gao Q, Gao L, Wang C: Imapreduce: a

distributed computing framework for iterative

computation. J Grid Comput 2012, 10(1):47-68

[9] Agarwal S, Mozafari B, Panda A, Milner H, Madden S,

Stoica I: BlinkDB: Queries with Bounded Errors and

Bounded Response times on very Large Data.

Proceedings of the 8th ACM European Conference on

Computer Systems 2013, 29-42. Xin RS, Gonzalez JE,

Franklin MJ, Stoica I: Graphx: A resilient distributed

graph system on spark. First International Workshop

on Graph Data Management Experiences and Systems

2013, 2.

[10] Kraska T, Talwalkar A, Duchi JC, Griffith R, Franklin

MJ, Jordan MI: MLbase: A Distributed Machine-

learning System. Proceedings of Sixth Biennial

Conference on Innovative Data Systems Research 2013.

Paper ID: SUB153724 2819

http://www.journalofbigdata.com/sfx_links?ui=s40537-014-0008-6&bibl=B2
http://www.journalofbigdata.com/sfx_links?ui=s40537-014-0008-6&bibl=B3
http://www.journalofbigdata.com/sfx_links?ui=s40537-014-0008-6&bibl=B4
http://www.journalofbigdata.com/sfx_links?ui=s40537-014-0008-6&bibl=B7
http://www.journalofbigdata.com/sfx_links?ui=s40537-014-0008-6&bibl=B8
http://www.journalofbigdata.com/sfx_links?ui=s40537-014-0008-6&bibl=B16
http://www.journalofbigdata.com/sfx_links?ui=s40537-014-0008-6&bibl=B19
http://www.journalofbigdata.com/sfx_links?ui=s40537-014-0008-6&bibl=B24
http://www.journalofbigdata.com/sfx_links?ui=s40537-014-0008-6&bibl=B25

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[11] Buyya R: High Performance Cluster Computing:

Architectures and Systems (Volume 1). Prentice Hall,

Upper SaddleRiver, NJ, USA; 1999.

[12] Bekkerman R, Bilenko M, Langford J (2012) Scaling up

Machine Learning: Parallel and Distributed

Approaches. Cambridge University Press

[13] Tullsen DM, Eggers SJ, Levy HM: Simultaneous

Multithreading: Maximizing on-Chip Parallelism.

ACM SIGARCH Computer Architecture News 1995,

392-403.

[14] Owens JD, Houston M, Luebke D, Green S, Stone JE,

Phillips JC: GPU computing. Proc IEEE 2008,

96(5):879-899. Nickolls J, Dally WJ: The GPU

computing era. IEEE Micro 2010, 30(2):56-69Hong S,

Kim H: An analytical Model for a GPU Architecture

with Memory-Level and Thread-Level Parallelism

Awareness. ACM SIGARCH Computer Architecture

News 2009, 152-163.

[15] Fang W, Lau KK, Lu M, Xiao X, Lam CK, Yang PY,

He B, Luo Q, Sander PV, Yang K: Parallel data mining

on graphics processors. Hong Kong University of

Science and Technology, Tech Rep HKUST-CS08-07 2.

2008.

[16] Francis RJ, Rose J, Vranesic ZG (1992) Field

Programmable Gate Arrays, vol 180. Springer

[17] Thomas DE, Moorby PR (2002) The Verilog Hardware

Description Language, vol 2. Springer

[18] Monmasson E, Idkhajine L, Cirstea MN, Bahri I, Tisan

A, Naouar MW: FPGAs in industrial control

applications. IEEE Trans Ind Informat 2011, 7(2):224-

243.

[19] Bouldin D: Impacting education using FPGAs.

Proceedings of 18th International conference on

Parallel and Distributed Processing Symposium 2004,

142.

[20] Chen H, Chen Y, Summerville DH: A survey on the

application of FPGAs for network infrastructure

security. IEEE Commun Surv Tutor 2011, 13(4):541-

561

Paper ID: SUB153724 2820

http://www.journalofbigdata.com/sfx_links?ui=s40537-014-0008-6&bibl=B27
http://www.journalofbigdata.com/sfx_links?ui=s40537-014-0008-6&bibl=B29
http://www.journalofbigdata.com/sfx_links?ui=s40537-014-0008-6&bibl=B32
http://www.journalofbigdata.com/sfx_links?ui=s40537-014-0008-6&bibl=B33
http://www.journalofbigdata.com/sfx_links?ui=s40537-014-0008-6&bibl=B36
http://www.journalofbigdata.com/sfx_links?ui=s40537-014-0008-6&bibl=B37

