
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Fault Tolerance in Parallel System Using

 Multiple Stacks

K. Meera
1
, Prof. S. Abiramasundari

2

1SASTRA University, Kumbakonam

2Assistant Professor, Department of Computer Science, SASTRA University, Kumbakonam

Abstract: The project describes a technique to tolerate faults in large data structures hosted on distributed servers, based on the concept

of fused backups. The prevalent solution to this problem is replication. To tolerate the faults (dead/unresponsive data structures) among

the whole distinct data structures, replication requires replicas of each data structure, resulting in number of servers and the number of

fault for additional backups. This project present a solution, referred to as fusion that uses a combination of erasure codes and selective

replication to tolerate f crash faults using just additional fused backups. This project shows that the solution achieves savings in space

over replication. Further, this work present a solution to tolerate Byzantine faults (malicious data structures), that requires only

backups as compared to the 2nf backups required by replication. We ensure that the overhead for normal operation in fusion is only as

much as the overhead for replication. Though recovery is costly in fusion, in a system with infrequent faults, the savings in space

outweighs the cost of recovery. This project explores the theory of fused backups and provides a library of such backups for all the data

structures in the Visual Studio Collection Framework. The experimental evaluation confirms that fused backups are space-efficient as

compared to replication (approximately n times), while they cause very little overhead for updates.

Keywords: Data Structures, Fault Tolerance, Parallel Application, Stack.

1. Introduction

Parallel systems are often modeled as a set of independent

servers interacting with clients through the use of messages.

To efficiently store and manipulate data, these servers

typically maintain large instances of data structures such as

linked lists, queues and hash tables. These servers are prone

to faults in which the data structures may crash, leading to a

total loss in state (crash faults) or worse, they may behave in

an adversarial manner, reflecting any arbitrary state, sending

wrong conflicting messages to the client or other data

structures (Byzantine faults).

Active replication is the prevalent solution to this problem.

To tolerate f crash faults among n given data structures,

replication maintains f + 1 replicas of each data structure,

resulting in a total of nf backups. These replicas can also

tolerate [f/2] Byzantine faults, since there is always a

majority of correct copies available for each data structure

[1].

2. Related Work

In [2], the theory of fused state machines uses a combination

of coding theory and replication to ensure efficiency as well

as savings in storage and messages during normal operations.

Fused state machines may incur higher overhead during

recovery from crash or Byzantine faults, but that may be

acceptable if the probability of fault is low.

In [3], Fusible data structures satisfy three main properties:

recovery, space constraint and efficient maintenance. The

recovery property ensures that in case of a failure, the fused

structure, along with the remaining original data structures,

can be used to reconstruct the failed structure. The space

constraint ensures that the number of nodes in the fused

structures is strictly smaller than the number of nodes in the

original structures. Finally, the efficient maintenance

property ensures that when any of the original data structures

is updated, the fused structure can be updated incrementally

using local information about the update and does not need to

be entirely recomputed.

In [4], Evaluation of fusion over standard benchmarks shows

that efficient backups exist for many examples. To illustrate

the practical use of fusion, we describe a fusion-based design

of a distributed application in the Map Reduce framework.

While the current replication-based solution may require 1.8

million map tasks, a fusion-based solution requires just 1.4

million map tasks with minimal overhead in terms of time as

compared to replication. This can result in considerable

savings in space and other computational resources such as

power.

In [5], Dynamo, a highly available and scalable data store,

used for storing state of a number of core services of

Amazon.com’s e-commerce platform. Dynamo has provided

the desired levels of availability and performance and has

been successful in handling server failures, data center

failures and network partitions. Dynamo is incrementally

scalable and allows service owners to scale up and down

based on their current request load. Dynamo allows service

owners to customize their storage system to meet their

desired performance, durability and consistency SLAs by

allowing them to tune the parameters N, R, and W.

In [6], RAIDS offer a cost effective option to meet the

challenge of exponential growth of the processor and

memory speed. This work believe the size reduction of

personal computer disks is a key to the success of disk arrays,

just as Gordon Bell argues that the size reduction of micro

processors is a key to the success in multiprocessors. In

both cases the smaller size simplifies the interconnection of

Paper ID: SUB153649 2333

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the many components as well as packaging and cabling

While large arrays of mainframe processors (or SLEDS) are

possible. it is certainly easier to construct an array from the

same number of microprocessors (or PC drives) Just as Bell

coined the term “multi” to distinguish a multiprocessor made

from microprocessors, we use the term “RAID” to identify a

disk array made from personal computer disks.

3. Proposed Work

The proposed system present a solution, referred to as fusion

that uses to avoid replication. It shows that the solution

achieves savings in space over replication. The fused

backups are space-efficient as compared to replication

(approximately n times), while they cause very little overhead

for updates. In our proposed system, the data loss and time

delay can be reduced when compared to the already existing

services. Computer can carry pit calculation in just few

seconds that would require months or perhaps even years

when carried out by hand. Practically, the proposed system

never makes a mistake of its own accord.

Advantages

• Avoid Replicas

• Less Backups

• Less Processing Time

• Low Space is enough

• Network Traffic is avoided

• Low cost comparing with existing system

• Router is used for boost up the network speed

4. Methodology Used

4.1 Parallel Computation

Parallel Computing is a form of computation in which many

calculations are carried out simultaneously, operating on the

principle that large problems can often be divided into

smaller ones, which are then solved concurrently ("in

parallel"). There are several different forms of parallel

computing: bit-level, instruction level, data, and task

parallelism. Parallelism has been employed for many years,

mainly in high-performance computing, but interest in it has

grown lately due to the physical constraints

preventing frequency scaling. As power consumption (and

consequently heat generation) by computers has become a

concern in recent years, parallel computing has become the

dominant paradigm in computer architecture, mainly in the

form of multi-core processors.

Parallel computers can be roughly classified according to the

level at which the hardware supports parallelism, with multi-

core and processor computers having multiple processing

elements within a single machine, while clusters, MPPs,

and grids use multiple computers to work on the same task.

Specialized parallel computer architectures are sometimes

used alongside traditional processors, for accelerating

specific tasks.

4.2 Insert Fused Backups

This algorithm for the insert of a key-value pair at the

primaries and the backups. When the client sends an insert to

a primary Xi, if the key is not already present, Xi creates a

new node containing this key value, inserts it into the primary

linked list (denoted primaryLinkedList) and inserts a pointer

to this node at the end of the aux list (auxList). The primary

sends the key, the new value to be added and the old value

associated with the key to all the fused backups. Each fused

backup maintains a stack (data Stack) that contains the

primary elements in the coded form. On receiving the insert

from Xi, if the key is not already present, the backup updates

the code value of the fused node following the one contains

the top-most element of Xi (pointed to by tos[i]). To maintain

order information, the backup inserts a pointer to the newly

updated fused node, into the index structure (indexList[i]) for

Xi with the key received. A reference count (refCount)

tracking the number of elements in the fused node is

maintained to enable efficient deletes.

Algorithm:

Step 1: initialize the linked list and Stack

Step 2: Insert the backup into linked list

Step 3: If replicas contains, insert replica data into stack

Step 4: Get top of the stack data

Step 5: Stored into linked list element

4.3 Delete Fused Backups

It shows the algorithms for the delete of a key at the

primaries and the backups. Xi deletes the node associated

with the key from the primary and obtains its value which

needs to be sent to the backups. Along with this value and the

key k, the primary also sends the value of the element

pointed by the tail node of the aux list. This corresponds to

the top-most element of Xi at the backup stack and is hence

required for the shift operation that will be performed at the

backup. After sending these values, the primary shifts the

final node of the aux list to the position of the aux node

pointing to the deleted element, to mimic the shift of the final

element at the backup.

Algorithm

Step 1: Gather Top of the Stack

Step 2: Move TOS into linked list

Step 3: Store Linked list element

Step 4: Clear Stack Elements

Step 5: Set Stack is empty, Null is TOS

5. Experimental Results

Figure 1: Stack Implementation

Paper ID: SUB153649 2334

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Bit-level_parallelism
http://en.wikipedia.org/wiki/Instruction_level_parallelism
http://en.wikipedia.org/wiki/Data_parallelism
http://en.wikipedia.org/wiki/Task_parallelism
http://en.wikipedia.org/wiki/Task_parallelism
http://en.wikipedia.org/wiki/Task_parallelism
http://en.wikipedia.org/wiki/High_performance_computing
http://en.wikipedia.org/wiki/Frequency_scaling
http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/Multi-core_processor
http://en.wikipedia.org/wiki/Multi-core
http://en.wikipedia.org/wiki/Multi-core
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Massively_parallel_(computing)
http://en.wikipedia.org/wiki/Grid_computing

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 In this system the stack will be fused when more than one

replicated data files transfer to the client machine.

 The array based stack data structure maintains an array of

data, an index tos pointing to the element in the array

representing the top of the stack and the usual push and

pop operations.

Push Operation

function xi:push(newItem)

xi.array[xi.tos] := newItem;

xi.tos++;

y.push(i,newItem);

end function

function y:push(i; newItem)

y.array[y.tos[i]] := y.array[y.tos[i]] newItem;

y.tos[i]++;

end function

Pop Operation

function xi:pop()

x.tos[i] --;

y.pop(i, xi.array[xi.tos]);

return xi.array[xi.tos]

function y:pop(i; oldItem)

y.tos[i] --;

y.array[y.tos[i]] := y.array[y.tos[i]] oldItem;

end function

Recover Operation

function y:recover(failedP rocess)

/*Assuming that all source stacks have the same size*/

recoveredArray := new Array[y.array.size];

for j = 0 to tos[failedP rocess] ¡ 1

recItem := y[j];

foreach process p != failedP rocess

if (j < tos[p]) recItem := recItem xp.array[j];

recoveredArray[j] := recItem;

return recoveredArray, tos[failedProcess]

Performance Comparison with the Existing System

0

20

40

60

80

100

120

No. of Data

Files

Backup Needed

Figure 2: Performance Comparison with the Existing System

To correct f crash faults among n primaries, fusion requires f

backup data structures as compared to the nf backup data

structures required by replication. For Byzantine faults,

fusion requires nf + f backups as compared to the 2nf

backups required by replication.For crash faults, the total

space occupied by the fused backups in msf as compared to

nmsf for replication (nf backups of size ms each). For

Byzantine faults, since we maintain f copies of each primary

along with f fused backups, the space complexity for fusion

is nfms + msf as compared to 2nmsf for replication.

Performance of Fused Backups

7.5

8

8.5

9

9.5

10

10.5

No.of Backups

Corrected

Backups

Figure 3: Performance of Fused Backups

This refers to the number of messages that need to be

exchanged once a fault has been detected. When t crash

faults are detected, in fusion, the client needs to acquire the

state of all the remaining data structures. This requires n−t

messages of size O(ms) each. In replication the client only

needs to acquire the state of the failed copies requiring only t

messages of size O(ms) each. For Byzantine faults, in fusion,

the state of all n + nf + f data structures (primaries and

backups) needs to be acquired. This requires nf + f messages

of size O(ms) each. In replication, only the state of any 2t + 1

copies of the faulty primary are needed, requiring just 2t + 1

messages of size O(ms) each.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Column1

Corrected

Backups

Figure 4: Time Complexity of Fused Backups

It defines the number of backups move from the different

servers to the client also analysis the faulted and corrected

backup’s performance. The chart defines different backups

and corrected data transfer to the client

Paper ID: SUB153649 2335

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

6. Conclusions and Future Work

A fusion-based technique for fault tolerance that savings in

space as compared to replication with almost no overhead

during normal operation. This System provide a generic

design of fused backups and their implementation for all the

data structures in the Visual Studio framework that includes

vectors, stacks, maps, trees, and most other commonly used

data structures. This System compare the main features of

work with replication, both theoretically and experimentally.

This work confirms that fusion is extremely space efficient

while replication is efficient in terms of recovery, load on the

backups and the size of the messages that need to be sent to

the backups. In our future, we investigate the other data

structure concepts like Queue, and Tree methods to

implement the current system. The system performance is

increasing when we transferring the bulk of data from the

server to client. Utilize the main memory to recover the

faulted data.

References

[1] Bharath Balasubramanian and Vijay K. Garg. Fused data

structure library (implemented in java 1.6). In Parallel

and Distributed Systems Laboratory,

http://maple.ece.utexas.edu, 2010.

[2] Vijay K. Garg. Implementing fault-tolerant services

using state machines:Beyond replication. In DISC, pages

450–464, 2010.

[3] Bharath Balasubramanian and Vijay K. Garg. Fused data

structures for handling multiple faults in distributed

systems. In Proceedings of the 2011 31st International

Conference on Distributed Computing Systems, ICDCS

’11, pages 677–688, Washington, DC, USA, 2011. IEEE

Computer Society.

[4] Bharath Balasubramanian and Vijay K. Garg. Fused

state machines for fault tolerance in distributed systems.

In Principles of Distributed Systems - 15th International

Conference, OPODIS 2011, Toulouse, France,

December 13-16, 2011. Proceedings, volume 7109 of

Lecture Notes in Computer Science, pages 266–282.

Springer, 2011.

[5] P. M. Melliar-Smith, L. E. Moser, and V. Agrawala.

Broadcast protocols for distributed systems. IEEE Trans.

Parallel Distrib. Syst., 1(1):17–25, January 1990.

[6] J.S. Plank and L. Xu, “Optimizing Cauchy Reed-

Solomon Codes for Fault-Tolerant Network Storage

Applications,” Proc. IEEE Fifth Int’l Symp. Network

Computing and Applications, pp. 173-180, 2006.

[7] M.O. Rabin, “Efficient Dispersal of Information for

Security, Load Balancing, and Fault Tolerance,” J.

ACM, vol. 36, no. 2, pp. 335-348, 1989.

[8] I.S. Reed and G. Solomon, “Polynomial Codes over

Certain Finite Fields,” J. Soc. for Industrial and Applied

Math., vol. 8, no. 2, pp. 300-304, 1960.

[9] F.B. Schneider, “Byzantine Generals in Action:

Implementing Fail- Stop Processors,” ACM Trans.

Computer Systems, vol. 2, no. 2, pp. 145-154, 1984.

[10] F.B. Schneider, “Implementing Fault-Tolerant Services

Using the State Machine Approach: A Tutorial,” ACM

Computing Surveys, vol. 22, no. 4, pp. 299-319, 1990.

[11] C.E. Shannon, “A Mathematical Theory of

Communication,” Bell Systems Technical J., vol. 27, pp.

379-423 and 623-656, 1948.

[12] J.K. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,

J. Leverich, D. Mazie`res, S. Mitra, A. Narayanan, M.

Rosenblum, S.M. Rumble, E. Stratmann, and R.

Stutsman, “The Case for RAMClouds: Scalable High-

Performance Storage Entirely in Dram,” ACM SIGOPS

Operating Systems Rev., vol. 43, pp. 92-105, 2009.

[13] D.A. Patterson, G. Gibson, and R.H. Katz, “A Case for

Redundant Arrays of Inexpensive Disks (RAID),” Proc.

ACM SIGMOD Int’l Conf. Management of Data

(SIGMOD ’88), pp. 109-116, 1988.

[14] W.W. Peterson and E.J. Weldon, Error-Correcting

Codes - Revised, second ed. The MIT Press, Mar. 1972.

[15] J.S. Plank, “A Tutorial on Reed-Solomon Coding for

Fault- Tolerance in RAID-Like Systems,” Software -

Practice and Experience, vol. 27, no. 9, pp. 995-1012,

Sept. 1997.

Paper ID: SUB153649 2336

