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Abstract: The project describes a technique to tolerate faults in large data structures hosted on distributed servers, based on the concept 

of fused backups. The prevalent solution to this problem is replication. To tolerate the faults (dead/unresponsive data structures) among 

the whole distinct data structures, replication requires replicas of each data structure, resulting in number of servers and the number of 

fault for additional backups. This project present a solution, referred to as fusion that uses a combination of erasure codes and selective 

replication to tolerate f crash faults using just additional fused backups. This project shows that the solution achieves savings in space 

over replication. Further, this work present a solution to tolerate Byzantine faults (malicious data structures), that requires only 

backups as compared to the 2nf backups required by replication. We ensure that the overhead for normal operation in fusion is only as 

much as the overhead for replication. Though recovery is costly in fusion, in a system with infrequent faults, the savings in space 

outweighs the cost of recovery. This project explores the theory of fused backups and provides a library of such backups for all the data 

structures in the Visual Studio Collection Framework. The experimental evaluation confirms that fused backups are space-efficient as 

compared to replication (approximately n times), while they cause very little overhead for updates.  
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1. Introduction 
 

Parallel systems are often modeled as a set of independent 

servers interacting with clients through the use of messages. 

To efficiently store and manipulate data, these servers 

typically maintain large instances of data structures such as 

linked lists, queues and hash tables. These servers are prone 

to faults in which the data structures may crash, leading to a 

total loss in state (crash faults) or worse, they may behave in 

an adversarial manner, reflecting any arbitrary state, sending 

wrong conflicting messages to the client or other data 

structures (Byzantine faults).  

 

Active replication is the prevalent solution to this problem. 

To tolerate f crash faults among n given data structures, 

replication maintains f + 1 replicas of each data structure, 

resulting in a total of nf backups. These replicas can also 

tolerate [f/2] Byzantine faults, since there is always a 

majority of correct copies available for each data structure 

[1].  

 

2. Related Work 
 

In [2], the theory of fused state machines uses a combination 

of coding theory and replication to ensure efficiency as well 

as savings in storage and messages during normal operations. 

Fused state machines may incur higher overhead during 

recovery from crash or Byzantine faults, but that may be 

acceptable if the probability of fault is low. 

 

In [3], Fusible data structures satisfy three main properties: 

recovery, space constraint and efficient maintenance. The 

recovery property ensures that in case of a failure, the fused 

structure, along with the remaining original data structures, 

can be used to reconstruct the failed structure. The space 

constraint ensures that the number of nodes in the fused 

structures is strictly smaller than the number of nodes in the 

original structures. Finally, the efficient maintenance 

property ensures that when any of the original data structures 

is updated, the fused structure can be updated incrementally 

using local information about the update and does not need to 

be entirely recomputed. 

 

In [4], Evaluation of fusion over standard benchmarks shows 

that efficient backups exist for many examples. To illustrate 

the practical use of fusion, we describe a fusion-based design 

of a distributed application in the Map Reduce framework. 

While the current replication-based solution may require 1.8 

million map tasks, a fusion-based solution requires just 1.4 

million map tasks with minimal overhead in terms of time as 

compared to replication. This can result in considerable 

savings in space and other computational resources such as 

power. 

 

In [5], Dynamo, a highly available and scalable data store, 

used for storing state of a number of core services of 

Amazon.com’s e-commerce platform. Dynamo has provided 

the desired levels of availability and performance and has 

been successful in handling server failures, data center 

failures and network partitions. Dynamo is incrementally 

scalable and allows service owners to scale up and down 

based on their current request load. Dynamo allows service 

owners to customize their storage system to meet their 

desired performance, durability and consistency SLAs by 

allowing them to tune the parameters N, R, and W. 

 

In [6], RAIDS offer a cost effective option to meet the 

challenge of exponential growth of the processor and 

memory speed. This work believe the size reduction of 

personal computer disks is a key to the success of disk arrays, 

just as Gordon Bell argues that the size reduction of micro 

processors is a key to the success in multiprocessors.    In 

both cases the smaller size simplifies the interconnection of 
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the many components as well as packaging and cabling 

While large arrays of mainframe processors (or SLEDS) are 

possible. it is certainly easier to construct an array from the 

same number of microprocessors (or PC drives) Just as Bell 

coined the term “multi” to distinguish a multiprocessor made 

from microprocessors, we use the term “RAID” to identify a 

disk array made from personal computer disks.  

 

3. Proposed Work 
 

The proposed system present a solution, referred to as fusion 

that uses to avoid replication. It shows that the solution 

achieves savings in space over replication. The fused 

backups are space-efficient as compared to replication 

(approximately n times), while they cause very little overhead 

for updates. In our proposed system, the data loss and time 

delay can be reduced when compared to the already existing 

services. Computer can carry pit calculation in just few 

seconds that would require months or perhaps even years 

when carried out by hand. Practically, the proposed system 

never makes a mistake of its own accord. 

 

Advantages 

• Avoid Replicas 

• Less Backups 

• Less Processing Time 

• Low Space is enough 

• Network Traffic is avoided 

• Low cost comparing with existing system 

• Router is used for boost up the network speed 

 

4. Methodology Used 
 

4.1 Parallel Computation 

 

Parallel Computing is a form of computation in which many 

calculations are carried out simultaneously, operating on the 

principle that large problems can often be divided into 

smaller ones, which are then solved concurrently ("in 

parallel"). There are several different forms of parallel 

computing: bit-level, instruction level, data, and task 

parallelism. Parallelism has been employed for many years, 

mainly in high-performance computing, but interest in it has 

grown lately due to the physical constraints 

preventing frequency scaling. As power consumption (and 

consequently heat generation) by computers has become a 

concern in recent years, parallel computing has become the 

dominant paradigm in computer architecture, mainly in the 

form of multi-core processors.  

 

Parallel computers can be roughly classified according to the 

level at which the hardware supports parallelism, with multi-

core and processor computers having multiple processing 

elements within a single machine, while clusters, MPPs, 

and grids use multiple computers to work on the same task. 

Specialized parallel computer architectures are sometimes 

used alongside traditional processors, for accelerating 

specific tasks. 

 

 

 

4.2 Insert Fused Backups 

 

This algorithm for the insert of a key-value pair at the 

primaries and the backups. When the client sends an insert to 

a primary Xi, if the key is not already present, Xi creates a 

new node containing this key value, inserts it into the primary 

linked list (denoted primaryLinkedList) and inserts a pointer 

to this node at the end of the aux list (auxList). The primary 

sends the key, the new value to be added and the old value 

associated with the key to all the fused backups. Each fused 

backup maintains a stack (data Stack) that contains the 

primary elements in the coded form. On receiving the insert 

from Xi, if the key is not already present, the backup updates 

the code value of the fused node following the one contains 

the top-most element of Xi (pointed to by tos[i]). To maintain 

order information, the backup inserts a pointer to the newly 

updated fused node, into the index structure (indexList[i]) for 

Xi with the key received. A reference count (refCount) 

tracking the number of elements in the fused node is 

maintained to enable efficient deletes. 

Algorithm: 

Step 1: initialize the linked list and Stack  

Step 2: Insert the backup into linked list 

Step 3: If replicas contains, insert replica data into stack 

Step 4: Get top of the stack data 

Step 5: Stored into linked list element 

 

4.3 Delete Fused Backups 

 

It shows the algorithms for the delete of a key at the 

primaries and the backups. Xi deletes the node associated 

with the key from the primary and obtains its value which 

needs to be sent to the backups. Along with this value and the 

key k, the primary also sends the value of the element 

pointed by the tail node of the aux list. This corresponds to 

the top-most element of Xi at the backup stack and is hence 

required for the shift operation that will be performed at the 

backup. After sending these values, the primary shifts the 

final node of the aux list to the position of the aux node 

pointing to the deleted element, to mimic the shift of the final 

element at the backup. 

Algorithm 

Step 1: Gather Top of the Stack 

Step 2: Move TOS into linked list 

Step 3: Store Linked list element 

Step 4: Clear Stack Elements 

Step 5: Set Stack is empty, Null is TOS 

 

5. Experimental Results 
 

 
Figure 1: Stack Implementation 
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 In this system the stack will be fused when more than one 

replicated data files transfer to the client machine. 

 The array based stack data structure maintains an array of 

data, an index tos pointing to the element in the array 

representing the top of the stack and the usual push and 

pop operations. 

 

Push Operation 

function xi:push(newItem) 

xi.array[xi.tos] := newItem; 

xi.tos++; 

y.push(i,newItem); 

end function 

function y:push(i; newItem) 

y.array[y.tos[i]] := y.array[y.tos[i]]  newItem; 

y.tos[i]++; 

end function 

 

Pop Operation 

function xi:pop() 

x.tos[i] --; 

y.pop(i, xi.array[xi.tos]); 

return xi.array[xi.tos] 

function y:pop(i; oldItem) 

y.tos[i] --; 

y.array[y.tos[i]] := y.array[y.tos[i]]  oldItem; 

end function 

 

Recover Operation 

function y:recover(failedP rocess) 

/*Assuming that all source stacks have the same size*/ 

recoveredArray := new Array[y.array.size]; 

for j = 0 to tos[failedP rocess] ¡ 1 

recItem := y[j]; 

foreach process p != failedP rocess 

if (j < tos[p]) recItem := recItem  xp.array[j]; 

recoveredArray[j] := recItem; 

return recoveredArray, tos[failedProcess] 

 

Performance Comparison with the Existing System 
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Figure 2: Performance Comparison with the Existing System 

 

To correct f crash faults among n primaries, fusion requires f 

backup data structures as compared to the nf backup data 

structures required by replication. For Byzantine faults, 

fusion requires nf + f backups as compared to the 2nf 

backups required by replication.For crash faults, the total 

space occupied by the fused backups in msf as compared to 

nmsf for replication (nf backups of size ms each). For 

Byzantine faults, since we maintain f copies of each primary 

along with f fused backups, the space complexity for fusion 

is nfms + msf as compared to 2nmsf for replication. 

 

Performance of Fused Backups 
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Figure 3: Performance of Fused Backups 

 

This refers to the number of messages that need to be 

exchanged once a fault has been detected. When t crash 

faults are detected, in fusion, the client needs to acquire the 

state of all the remaining data structures. This requires n−t 

messages of size O(ms) each. In replication the client only 

needs to acquire the state of the failed copies requiring only t 

messages of size O(ms) each. For Byzantine faults, in fusion, 

the state of all n + nf + f data structures (primaries and 

backups) needs to be acquired. This requires nf + f messages 

of size O(ms) each. In replication, only the state of any 2t + 1 

copies of the faulty primary are needed, requiring just 2t + 1 

messages of size O(ms) each. 
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Figure 4: Time Complexity of Fused Backups 

 

It defines the number of backups move from the different 

servers to the client also analysis the faulted and corrected 

backup’s performance. The chart defines different backups 

and corrected data transfer to the client 
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6. Conclusions and Future Work 
  

A fusion-based technique for fault tolerance that savings in 

space as compared to replication with almost no overhead 

during normal operation. This System provide a generic 

design of fused backups and their implementation for all the 

data structures in the Visual Studio framework that includes 

vectors, stacks, maps, trees, and most other commonly used 

data structures. This System compare the main features of 

work with replication, both theoretically and experimentally. 

This work confirms that fusion is extremely space efficient 

while replication is efficient in terms of recovery, load on the 

backups and the size of the messages that need to be sent to 

the backups. In our future, we investigate the other data 

structure concepts like Queue, and Tree methods to 

implement the current system. The system performance is 

increasing when we transferring the bulk of data from the 

server to client. Utilize the main memory to recover the 

faulted data. 
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