
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Novel Network-Levitated Merge Algorithm for
Hadoop Acceleration

Rina Sao, Naveen K.

1SRM University, M.Tech Cloud Computing (IT), Tamilnadu, India

2

SRM University, Information Technology, Tamilnadu, India

Abstract: Large companies like Facebook, Google, and Microsoft as well as a number of small and medium enterprises daily process
massive amounts of data in batch jobs and in real time applications. This generates high network traffic, which is hard to support using
traditional, oversubscribed, network infrastructures. To address this issue, several novel network topologies have been proposed, aiming
at increasing the bandwidth available in enterprise clusters. Hadoop faces a number of issues to achieve the best performance from the
underlying systems. These include a serialization barrier that delays the reduce phase, and the lack of portability to different
interconnects. To keep up with the increasing volume of data sets, Hadoop also requires efficient I/O capability from the underlying
computer systems to process and analyze data. We describe Hadoop-A, an acceleration framework that optimizes Hadoop with plug-in
components for fast data movement. A novel network-levitated merge algorithm is introduced to merge data without repetition and disk
access Our experimental results show that Hadoop-A significantly speeds up data movement in MapReduce and doubles the throughput
of Hadoop.

Keywords: Hadoop, MapReduce, Network-levitated merge, Hadoop acceleration, Cloud Computing

1. Introduction

MapReduce programs are being written for a wide variety of
application domains including business data processing, text
analysis, natural language processing, Web graph and social
network analysis, and computational science. The
MapReduce programming model mostly only requires
programmers to describe the computation using two
primitives inspired by functional programming languages,
Map and Reduce. The map function usually independently
processes a portion of the input data and emits multiple
intermediate key/value pairs, while the reduce function
groups all key/value pairs with the same key to a single
output key/value pair. Additionally, users can provide an
optional combine function that locally aggregates the
intermediate key/value pairs to save networking bandwidth
and reduce memory consumptions.

Many data-parallel applications could be easily implemented
with MapReducemodel, such asWord Count,
DistributedGrep, Inverted Index and Distributed Sort. A
MapReduce program p expresses a computation over input
data d through two functions: map(k1; v1) and reduce(k2;
list(v2)). The map(k1; v1) function is invoked for every key-
value pair hk1; v1i in the input data d to output zero or more
key-value pairs of the form hk2; v2i. The reduce (k2;
list(v2)) function is invoked for every unique key k2 and
corresponding values list(v2) in the map output. reduce(k2;
list(v2)) outputs zero or more key-value pairs of the form
hk3; v3i. The keys k1, k2, and k3 as well as the values v1,
v2, and v3 can be of different and arbitrary types.

Hadoop implements MapReduce framework with two
categories of components: a JobTracker and many Task-
Trackers. The JobTracker commands TaskTrackers (a.k.a.
slaves) to process data in parallel through two main
functions: map and reduce. In this process, the JobTracker is
in charge of scheduling map tasks (MapTasks) and reduce
tasks (ReduceTasks) to TaskTrackers. ReduceTask needs to

fetch a part of the intermediate output from all finished
MapTasks. Globally, this leads to the shuffling of
intermediate data (in segments) from all MapTasks to all
ReduceTasks. For many data-intensive MapReduce
programs, data shuffling can lead to a significant number of
disk operations, contending for the limited I/O bandwidth.

Hadoop MapReduce’s has three data processing phases, i.e.,
shuffle, merge, and reduce.

More importantly, the current merge algorithm in Hadoop
merges intermediate data segments from MapTasks when
the number of available segments (including those that are
already merged) goes over a threshold. These segments are
spilled to local disk storage when their total size is bigger
than the available memory.

This algorithm causes data segments to be merged
repetitively and, therefore, multiple rounds of disk accesses
of the same data. To address these critical issues for Hadoop
MapReduce framework, we have designed Hadoop-A, a
portable acceleration framework that can take advantage of
plug-in components. Several enhancements are introduced:
1) a novel algorithm that enables ReduceTasks to perform
data merging without repetitive merges and extra disk
accesses; 2) a portable implementation of Hadoop-A that can
support both TCP/ IP and remote direct memory access
(RDMA). Since ReduceTasks are able to merge data by
staying above local disks, we refer to this new algorithm as
network-levitated merge (NLM). We have carried out an
extensive set of experiments to evaluate the performance of
Hadoop-A. Our evaluation demonstrates that the network-
levitated merge algorithm is able to remove the effectively
overlap data merge and reduce operations for Hadoop
ReduceTasks. Overall, Hadoop-A is able to double the
throughput of Hadoop data processing.

Paper ID: SUB153627 2471

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Reliable Storage: HDFS
Hadoop includes a fault‐tolerant storage system called the
Hadoop Distributed File System, or HDFS. HDFS is able to
store huge amounts of information, scale up incrementally
and survive the failure of significant parts of the storage
infrastructure without losing data. Hadoop creates clusters of
machines and coordinates work among them. Clusters can
be built with inexpensive computers. If one fails, Hadoop
continues to operate the cluster without losing data or
interrupting work, by shifting work to the remaining
machines in the cluster.

Figure 1: HDFS Architecture

The project includes these modules:
• Hadoop Common: The common utilities that support

the other Hadoop modules.
• Hadoop Distributed File System (HDFS™): A

distributed file system that provides high-throughput
access to application data.

• Hadoop YARN: A framework for job scheduling and
cluster resource management.

• Hadoop MapReduce: A YARN-based system for
parallel processing of large data sets.

Hadoop Acceleration: Hadoop Acceleration is an
acceleration framework that optimized hadoop with plug-in
component implemented in “JAVA” for fast data movement.
Hadoop Acceleration doubles the data processing throughput
of hadoop and reduces CPU utilization by more than 36%.

Network-Levitated Merge: RDMA (Remote Direct
Memory Access) will be used for merging process in
hadoop. It will not required disk access and it can directly
access memory of other computer in the network, that’s why
it is called network –levitated merge. Since it is not access
the hard disk it is only using RAM or Memory directly over
network, So latency will be reduced.

2. Problem Statement

Our characterization and analysis reveal a number of issues,
including
 1) Repetitive merges and disk access, and
 2) The lack of portability to different interconnects.

2.1 Repetitive Merges and Disk Access

• ReduceTasks merge data segments when the number of

segments or their total size goes over a threshold.
• A newly merged segment has to be spilled to local disks

due to memory pressure. However, the current merge

algorithm in Hadoop often leads to repetitive merges, thus
extra disk accesses.

• Figure shows a common sequence of merge operations in
Hadoop. For the purpose of illustration, we hereby choose
a very small threshold parameter io.sort.factor = 3. A
ReduceTask fetches its data segments and arranges them
in the order of their size. When the number of data
segments reaches six, i.e. twice the threshold, the smallest
three segments is merged, shown as Step 1 in Figure 2.
Under memory pressure, this will incur disk access. The
resulting segment is inserted back into the heap based on
its relative size.

Figure 2: Repetitive Merging and Disk Access

• When more segments arrive, the threshold is reached

again.
• It is then necessary to merge another set of segments,

shown as Step 3. This again causes additional disk
access, let alone the need to read segments back if they
have been stored on local disks.

• As even more segments arrive, a previously merged
segment will be grouped into another set and merged
again, as shown in Step 4.

• Furthermore, any segment merged from a subset of
segments eventually needs to be merged for final results.
Altogether, this means repetitive merges and disk access,
causing degraded performance for Hadoop. Therefore, an
alternative merge algorithm is critical for Hadoop to
mitigate the impact of repetitive merges and extra disk
accesses.

2.2 The Lack of Network Portability

Besides the TCP/IP protocol, Hadoop does not support other
transport protocols such as RDMA on InfiniBand and 10-
Gigabit Ethernet (10GigE) that have matured in the high-
performance computing (HPC) community.

Simply replacing the network hardware with the latest
interconnect technologies such as InfiniBand and 10GigE
and continuing to run Hadoop on TCP/IP will not enable
Hadoop to leverage the strengths of RDMA.

It is worth noting that despite the high-price differential
between RDMA-capable interconnects and traditional
commodity Gigabit Ethernets, such price differences have
shrunk significantly over the past few years. Many popular
commodity interconnects, such as 10GigE, are becoming
RDMA-capable as well. Thus, the lack of portability on
multiple interconnects will prevent Hadoop from keeping up
with the advances of other computer technologies,

Paper ID: SUB153627 2472

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

particularly when more powerful processors, storage, and
interconnect devices are deployed to various computing and
data centers.

3. Existing System

• Jobtracker commonds multiple tasktracker in mapreduce

framework.
• Shuffling of data from maptask to all reducetasks.
• Data shuffling lead to significant no. of disk operations.
• The overall processing is performed using shuffle, merge

and reduce phases in hadoop.
• MapReduce: Simplified Data Processing on Large

Clusters.
• A MapReduce Framework on Graphics Processors.

4. Proposed Solution

4.1 Network-Levitated Merge:

• In Hadoop repetitive merges because of limited memory

compared to the size of data. At the time of merging pull
the entire data, and store locally in memory or on disk.
This incurs many memory loads/stores and/or disk I/O
operations.

• Design an algorithm that can merge all data partitions
exactly once and, at the same time, stay levitated above
local disks.

Figure 3: Network Levitated Merge Algorithm

• There are three remote segments S1, S2, and S3 are to be
fetched and merged.

• Instead of fetching them to local disks, this new algorithm
only fetches a small header from each segment.

• Each header is especially constructed to contain partition
length, offset, and the first pair of <key,val>. These
<key,val> pairs are sufficient to construct a priority queue
(PQ) to organize these segments.

• More records after the first <key,val> pair can be fetched
as allowed by the available memory. Because it fetches
only a small amount of data per segment, this algorithm
does not have to store or merge segments onto local disks.

• The leading <key,val> pair will be the beginning point of
merge operations for individual segments, i.e., the merge
point.

• This algorithm merges the available <key,val> pairs in the
same way as is done in Hadoop. When the PQ is
completely established, the root of the PQ is the first
<key,val> pair among all segments.

• Update the order of PQ based on the first <key,val> pairs
of all segments. The next root will be the first <key,val>
among all remaining segments.

• The headers of all three segments are safely merged; more
data records are fetched, and the merge points are
relocated accordingly.

• Figure 3 shows a possible state of the three segments
when their merge completes.

4.2 RDMA based MapReduce Design

We introduce the major components in our RDMA based
MapReduce design and then explain our design details. We
first discuss our updated Shuffle design followed by the
Merge design.

1) RDMA based Shuffle: In the shuffle stage, both
TaskTracker and ReduceTask are modified to achieve the
benefits of RDMA. We have added the following new
components in the TaskTracker side:

RDMA Listener: Each TaskTracker initiates an
RDMAListener during its startup. RDMAListener in
TaskTracker waits for incoming connection requests from
the ReduceTask side, adds the connection to a pre-
established queue, and starts an RDMAReceiver if
necessary.

RDMA Receiver: Each RDMAReceiver is responsible for
receiving requests from ReduceTasks. RDMAReceiver gets
the end-point list that is currently being used and receives
request from those end-points. After receiving the request, it
places the request in DataRequestQueue.

DataRequestQueue: DataRequestQueue is used to hold all
the requests from ReduceTasks.

RDMA Responder: RDMAResponder belongs to a pool of
threads that wait on DataRequestQueue for incoming
requests. Whenever a new request gets inserted in Data
Request Queue, one of the RDMAResponders responds to
that request.

RDMA Copier: In the default design of MapReduce, the
copier threads are responsible for requesting data to Task-
Tracker and storing data for Merge.

2) Faster Merge: In the default design of MapReduce, each
HTTP response consists of the entire map output file,
dividing it into packets of the default packet size, 64 KB.
Which in turn creates the opportunity to transfer one map
output file in multiple communication steps instead of one.
By doing this, we can start the merge process as soon as
some key-value pairs from all map output files reach at the
reducer side.

3) Overlap of Shuffle, Merge and Reduce: In our design,
we start reduce operation as soon as the first merge
completes. In this way, we can achieve maximum benefit by
introducing pipelining between merge and reduce stages.

Paper ID: SUB153627 2473

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 4: Overlapping of different processes in MapReduce workflow

5. System Architecture

Figure 5: System architecture of hadoop MapReduce

6. Conclusions

• Examined the design and architecture of Hadoop

MapReduce framework and reveal critical issues faced by
the existing implementation.

• Designed and implemented Hadoop-A as an extensible
acceleration framework which addresses all these issues.

• We reveal that there are several critical issues faced by the
existing Hadoop implementation, including its merge
algorithm, as well as its lack of portability for multiple
interconnects. We have designed and implemented
Hadoop-A as an extensible acceleration framework that
can allow plug-in components to address all these issues.
By introducing a new network levitated algorithm that
merges data without touching disks. we have successfully
accomplished an accelerated Hadoop framework, Hadoop-
A. In addition, Hadoop-A has been designed as a portable
framework that can run on both high-performance RDMA
protocol and ubiquitous TCP/IP protocol.Hadoop-A can
significantly reduce disk accesses during Hadoop’s
shuffling and merging phases, thereby speedingup data
movement. Furthermore, we have quantified the
performance benefits of network-levitated merge and the
RDMA protocol, respectively, on the Hadoop
MapReduce.

References

[1] Weikuan Yu, Member, IEEE, Yandong Wang, and

Xinyu Que “Design and Evaluation of Network-
Levitated Merge for Hadoop Acceleration” IEEE
TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH
2014 page- 602-611.

[2] R. Recio, P. Culley, D. Garcia, and J. Hilland, “An
RDMA Protocol Specification (Version 1.0),” Oct. 2002.

[3] http://en.wikipedia.org/wiki/MapReduce.
[4] web.cs.wpi.edu/~cs4513/d08/OtherStuff/MapReduce-

TeamC.ppt.
[5] Infiniband Trade Association,

http://www.infinibandta.org 2013.
[6] T. Condie, N. Conway, P. Alvaro, J.M. Hellerstein, K.

Elmeleegy, and R. Sears, “MapReduce Online,” Proc.
Seventh USENIX Symp. Networked Systems Design and
Implementation (NSDI), pp. 312-328, Apr. 2010.

[7] M. Zaharia, A. Konwinski, A.D. Joseph, R.H. Katz, and
I. Stoica, “Improving MapReduce Performance in
Heterogeneous Environments,” Proc. Eighth USENIX
Symp. Operating Systems Design and Implementation
(OSDI ’08), Dec. 2008

ReduceMap
Task ShuffleTask TrackerSlave Node

........

Slave
Node

Reduce Map
Task Shuffle Task Tracker Slave Node

Paper ID: SUB153627 2474

http://creativecommons.org/licenses/by/4.0/�

