
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Software Defined Networking: Advanced Software

Engineering to Computer Networks

Ankush V. Ajmire
1
, Prof. Amit M. Sahu

2

1Student of Master of Engineering (Computer Science and Engineering), G.H. Raisoni college of Engineering and Management

Amravati (M.S.), India

2Assistant Professor Department of (Computer Science and Engineering), G.H. Raisoni college of Engineering and Management

Amravati (M.S.), India

Abstract: The paradigm defined networking software is becoming increasingly important and frequently used in the fields of

computer networks. It allows us to run the software that manages the entire network. This software becomes more complicated to

provide new features that were impossible to imagine before and it requires better performance, better reliability, security and better use

of resources will only be possible by advanced software engineering techniques (high availability and distributed systems, optimized

Linux kernel, synchronization, validation techniques).

Keywords: Software Defined Networking, Computer Networks, Openflow controller, Advanced Software Engineering.

1. Introduction

Software-defined networking (SDN) is the "hot" network

technology in recent years [2]. It brings many new features

and solves many difficult problems of existing networks. The

approach proposed by the SDN paradigm is to move the

network intelligence from the packet switching devices and

put it in the central logic controller. Forwarding decisions are

made first in the controller then moves down to the

supervised switches that simply running these decisions. This

gives us many advantages such as the control and overall

viewing the entire network at a time that useful for

automating network operations, better use server / network

utilization.

A controller (well known as network operating system) is a

dedicated server that is running special control software,

framework, which interacts with the switching devices and

provides an interface for management applications written by

the user observe and control the entire network. With same

as, the controller is the heart of SDN, and its characteristics

determine the performance of the network itself [1].

Author describes the basic architecture of contemporary

controller. For each part of a controller author show the

software engineering techniques are already being used and

could be used in the future to improve performance

characteristics. This paper shows the result of our last

experimental evaluation of SDN / OpenFlow controllers. On

this basis, author explains that the performance of one

controller is still not enough to manage the data centers and

large scale networks. Finally, this paper presents the

approach to high performance and reliable distributed

controller for next generation, and discuss possible ways to

mention organized and software engineering techniques in

high demand.

2. Background

2.1 History

Since the early 2000th many researchers at Stanford

University and Berkeley University have begun to rethink the

design and architecture of the network and the Internet. The

modern Internet and enterprise companies have a very

complex architecture and that are built using an old design

paradigm. This paradigm includes the demand for a

decentralized and autonomous control mechanism that means

that each instrument network devices both the forwarding

features and the control plane (congestion control, routing

algorithms). Furthermore, any additional functionality in

modern networking (for example, the traffic engineering,

access control, load balancing) is provided by the set of

complex protocols and special devices like getaway.

Corporate networks and backbone, infrastructure of data

centers, networks for research organizations and educational,

home and public networks for both wired and wireless are

built on a variety of hardware and proprietary software that

are high cost and difficult to manage and maintain. This leads

to inefficient use of physical infrastructure, high on cost for

security risks, management tasks and other problems.

Enterprise networks are often large, perform a wide variety

of protocols and applications, and typically operate under

constraints of reliability and high safety; thus, they represent

challenging environment for network management. The

stakes are high; the company's productivity can be severely

hampered by network or burglaries misconfigurations.

However, current solutions are low, which makes enterprise

networking both costly and error-prone. In fact, most of

today's networks are requiring substantial manual

configuration by trained operators to achieve even moderate

security [2], [4].

The architecture of the Internet is closed for innovations [5].

Reducing the impact of the real world in any given network

innovation is because the huge installed base of equipment

Paper ID: SUB153618 2201

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

and protocols, and reluctance to experiment with production

traffic, that created an excessively high barrier to entry for

new idea. Today, there are almost no practical way to

experiment with new network protocols (for example, new

routing protocols, or alternative to IP) in sufficiently realistic

environments (for example, the ladder carrying live traffic) to

gain the trust necessary for their large-scale deployment. The

result is that most of the new ideas of the networking

research community are accused and untested.

The design of the modern system often uses virtualization to

decouple the system service model of its physical realization.

Two common examples are the virtualization disks with

logical volumes that the storage interfaces and virtualization

of computing resources through the use of virtual machines.

The insertion of these abstraction layers allows operator

flexibility to achieve the operational objectives divorced

from underlying physical infrastructure. Today, the workload

can be instantiated dynamically expanded at runtime, moved

between physical servers (or geographical locations), and

suspended if necessary. Data and computing can be

replicated in real time across multiple physical hosts for high

availability in a single site or disaster recovery across

multiple sites. Unfortunately, computing and storage have

successfully leveraged the virtualization paradigm, the

network remains largely stuck in the physical world [7], [8],

[9]. As clearly stated in [6], networking has become a

significant operational bottleneck.

Although the simple task of the routing can be implemented

on arbitrary topologies, and the implementations of almost all

other network services (for example, routes of politics,

ACLs, QoS, isolation areas) are based on the state of

topology dependent configuration. The management of this

configuration state is cumbersome and error prone adding or

replacing equipment, topology changes, move the physical

location or handling hardware failures often require

significant manual reconfiguration.

Virtualization is no stranger to networks, networking has

long supported virtualized primitives such as virtual link

(tunnels) and broadcast domains (VLANs). However, these

primitive have not significantly changed the business model

of networks and operators to continue to configure multiple

physical devices to achieve a limited degree of virtualization

and automation. So while storage and computing have both

been greatly improved by the paradigm of virtualization,

networking has yet to break free of the physical

infrastructure. In addition, network virtualization

functionality implemented via protocols under L2-L4 layers

increase the cost and complexity of the network equipment

and the difficulty of setting up this type of hardware material.

2.2 SDN

In addition, to solve all the above problems with network

management and mentioned configuration, reduce the

complexity of network software and hardware, and make

them more open to innovation networks the great community

of academic and industrial researcher Open Networking

Foundation [10] propose a new paradigm for the networking

of Software Defined Networking .The approach proposed by

SDN paradigm is to separate the control plane (i.e. the policy

to the management network traffic) data path plane (i.e. the

actual packet transfer mechanisms) (in Figure 1).

Figure 1: Organization of Software Defined Network.

Traditionally, hardware implementations embodied the logic

required for the transmission of packets. That is, the

hardware was to capture all the complexity inherent in packet

transmission decision. According to the new paradigm [2],

[3], [5] all the orders for reference are done first in the

software (remote controller), and the hardware simply

mimics those decisions for subsequent packets on which that

decision applies (for example, all Packets flows networks).

Thus, the hardware does not need to understand the packet

forwarding logic; it caches only the results of previous

transfer decisions (taken by the software) and applies to

packets with the same header.

The essential task is to match incoming packets to previous

decisions. Packet transmission is treated as a matching

process, all packets matching an earlier decision handled by

the hardware, and with all non-matching packets handled by

the remote control software. It is important to mention that

only the packet headers are used in the matching process.

A network switching equipment must now implement a

simple set of primitives to manipulate packet headers (to

match against the matching rules and modify if necessary)

and forward packets [2]. The basic function of such base

SDN-switching software is a flow table that stores the

matching rules (as packet header patterns must match

incoming packet headers) and a set of actions to be applied to

the packet matched with success.

Switching hardware must also provide common interface

agnostic provider for remote controller. To unify the

interface between the remote switching and controller

hardware Special OpenFlow protocol [11] was introduced.

This protocol provide the controller with a way to discover

the OpenFlow-enabled switches, set the matching rules for

the switching equipment and to collect statistical switching

devices. Figure 2 illustrates an interaction between the

controller based OpenFlow and switching hardware based

OpenFlow, it controls the switch provides a set of

transmission rules.

Paper ID: SUB153618 2202

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The paradigm in SDN control functionality is implemented

by a dedicated remote host running special control software.

At present, there are a number of controllers. The best known

are POX [14], Beacon [15], MUL [17], Floodlight [16],

Figure 2: Paradigm of Software Defined Network

NOX [13], Ryu, [20] and Maestro [19]. Again, a controller is

a framework that works with OpenFlow-enabled switching

devices and provides an interface for management

applications written by the user to observe and control the

entire network. A controller does not manage the network by

then self; it merely provides a programming interface. The

Applications implemented on top of the network operating

system perform the actual management tasks.

A controller represents two major conceptual departures from

the status quo. First, the network operating system provides

programs with a centralized programming model; programs

are written as if whole network were present on one machine

(i.e., routing algorithms use Dijkstra to calculate shortest

paths, not Bellman-Ford). Second, the programs are written

in terms of high-level abstractions (for example, user and

host names), no low-level configuration parameters (for

example, MAC and IP addresses). This allows management

directives are applied independent of the underlying network

topology, but it is requires that the network operating system

maintain the fixings carefully (i.e. mappings) between these

abstractions and low-level configurations.

2.3 OpenFlow

The OpenFlow protocol is used to manage switching devices:

adding new flow, removal of flow, collect statistics. It

supports three types of messages as follows:

 Controller-to-switch messages are initiated by the

controller and used to inspect or manage the state of the

switch directly.

 Asynchronous messages are initiated by the switch and

used to update the controller of network events and the

changes in the switching state.

 Symmetrical messages are initiated by either the controller

or switch and sent unsolicited. All the messages and the

detailed specifications of the OpenFlow protocol could be

found in [12].

3. Controller

Based on the analysis of materials available about almost

twenty four SDN/OpenFlow controllers, paper proposed the

reference architecture controller SDN/ OpenFlow shown in

Figure 3. The main components are as follows:

Figure 3: The basic architecture of OpenFlow/SDN

controller.

1) Network layer: is responsible for the communication

with the switching devices. This is the base layer of each

controller which determines its performance. There are

two main tasks.

 Reading incoming messages from the OpenFlow

channel. Usually, this layer is based on the execution

time chosen programming language. For faster

communication with NIC we can also use the fast packet

processing framework as Intel DPDK [22]and netmap

[21].

 Inbound OpenFlow messages. The common approach is

to use multithreading. A thread listens to the new socket

switching connection requests and distributes new

connections on other worker threads. A discussion

thread communicates with appropriate switches receives

flow configuration requests from them and returns the

feed configuration rule. There is couple of advanced

techniques. For example, Maestro distributes incoming

packets using the round-robin algorithm, so this

approach is expected to show better results with

unbalanced load.

2) Library OpenFlow: The main functionality is

OpenFlow message processing, verifying the accuracy

and according to a type of packet produce new event as

"packetin", "portstatus" and etc. The most interesting

part here is not in modern controllers still is resistance to

malformed message.

3) Event layer: The layer is responsible for the

propagation of the event between the basic applications,

services, and the internal network application. The

network application subscribed on the basis of events

produces in which other applications can subscribe. This

is usually done by publishing / subscribing mechanism,

either by writing your own implementation or using the

standard as lib-event for C / C ++, RabbitMQ for

Erlang..

Paper ID: SUB153618 2203

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4) Services: This is the most commonly used network

functionality as switches discovery, topology creation,

routing, and firewall.

5) Internal network applications: It is your own

application as a learning L2 switch. "Internal" means

that it is compiled with the controller in order to get

better performances.

6) External API: The main idea behind the layer is to

provide independent language to communicate with the

controller. This common example is based on RESTful

Web API.

7) External network application: Lever applications in all

language services via External API exposed by the

internal applications and controller services. These

applications are not necessary in a low latency

communication and good performance with the

controller. The common example is application

monitoring.

8) Web user interface layer: It provides a user interface

based on the Web to manage the controller by setting up

different parameters

 Therefore, the most important general question before

choosing the controller or the creation of a new programming

language is to be used. There is a tradeoff between

performance and ease of use. For example, POX controller

writes about Python is good for rapid prototyping, but it is

too slow for the production.

4. Experimental Controller Evaluation

Author conducted an experimental evaluation of the

controllers. Authors test bed consisted of two servers

connected via a 10 GB link. The first server was used to

launch the controllers and the second server has been used

for the traffic generation according to a test case.

Paper chose the seven controllers SDN/OpenFlow following:

 NOX [13] is a multi-threaded C++ based controller written

above the Boost library.

 POX [14] is a controller based on single-threaded Python.

It is widely used for rapid prototyping of network

application in research.

 Beacon [15] is a controller based on Java multi-thread

which is based on OSGi and spring frameworks.

 Floodlight [16] is a Java-based controller that uses multi-

thread Netty framework.

 MUL [17] is a multi-threaded C-based controller writes on

top of libevent and glib.

 Maestro [19] is a Java-based controller that uses multi-

thread library java.nio.

 Ryu [20] is a Python wrapper regulator that uses gevent of

libevent.

Each controller runs the application from L2 switching

learning provided by the controller. There are several reasons

for this. It is representative and at the same time very simple.

It fully utilizes the internal mechanisms of the controller, and

it also shows the effectiveness of the programming language

is selected by implementing simple hash lookup.

This paper used the latest available sources of all controllers

and run all controllers with the recommended settings for the

performance and latency test, if available.

As traffic generators, author used freely available cbench

[18] and author’s hcprobe framework for controllers tests.

Cbench and hcrpobe emulates any number of OpenFlow

switches and hosts. Cbench is intended to measure various

aspects of controller performance, including response time of

the minimum and maximum control device, maximum

throughput. Hcprobe used to investigate various

characteristics of the controllers in a more flexible way by

specifying templates to generate OpenFlow messages, the

change in the number of reconnection attempts in case the

controller closes accidentally the connection, choosing the

profile of traffic. It is written in Haskell, which is the high

level programming language and allows users to easily create

their own scenarios for controller tests.

Authors testing methodology includes measures of

performance and scalability, and advanced functional

analysis such as security and reliability. The objective

measures of performance / scalability is to get maximum

throughput (number of outstanding packets, flows/sec) and

the minimum latency (response time, ms) for each controller.

For reliability, author measured the number of failures in the

long term test under a given workload profile. And as for

safety, author gives how the controllers work with OpenFlow

malformed messages.

Figure 4 mounts the maximum throughput for a different

number of available cores by a controller. The single

threaded controllers (Pox and Ryu) showed no scalability in

processor cores. The performance of multithreaded controller

increases constantly in line for 1-6 rings and much slower for

7-12 cores for use with Hyper Threading Technology (for the

benefit of the maximum performance of the technology is

40%). Beacon shows the best availability, reaching the speed

of 7 billion streams per second. This is because the use of

shared queues for incoming messages and prizes for outgoing

messages.

Figure 4: The different number of threads achieves average

throughput.

Paper ID: SUB153618 2204

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The average response times of all the controllers are in

between 80-100ms. Long term tests show that most

controllers when running for a long time begin to loos

connections with switches and lose packages in messages.

The average number of errors is 100 for 24 hours. And

almost all accidents controllers or lose the connection with a

switch when they received malformed messages.

Returning to the flow values and sufficiently understand if

the current performance. In the new flow demand data

centers happens in every 10us maximum 300μs and 2ms on

average [23]. Assuming small data center with 100K guests

and 32 hosts / rack, the maximum rate of flow of arrival can

be up to 300M with the rate between 1.5M and 10M.

Assuming 2M flow/s rate for a controller, it requires only 1-5

controllers to handle the median charge, but 150 for the peak

load. In large scale networks the situation can be extremely

worse.

Solving the problem should go two ways. The first way is

one controller improves itself by making advanced multi-

threaded optimizations. The second way is by using multiple

controllers bodies jointly managing the network. This

approach is called distributed controller.

5. Moving to Distributed Controller

As seen in the previous section one controller is not enough

to manage the entire network. There are two problems here:

 Scalability: Because networks are developing rapidly, the

controller's resources are not enough to maintain the status

of all network devices. In addition, the flow setup latency

in a larger network is also increasing.

 Reliability: Controller is a single point of failure. If the

controller fails, the network system stops.

To solve the above mention problems, we need physically

distributed control plan with centralized view of the entire

network. The diagram of the solution is shown in Figure 5.

Networks are divided into segments controlled by dedicated

example of the control unit. Network segments can overlap to

ensure network resilience in the event of failure of any

controller. In this case, the switches will be redistributed to

the appropriate bodies of the controller. Each controller is

Figure 5: The organization scheme of distributed controller.

connected to a distributed data store that provides a

consistent view of the entire network. It stores all the

switching and application specific information. Application

state is stored in the data store distributed to facilitate

migration of the switch and the controller of the failure

recovery.

In addition, each controller fails over in case of controller

failure. It might be cold or hot. The cold failover is disabled

by default and will only start when the master controller is

crashes. The hot failover receives the same message as the

master controller, but read only access. This provides the

smallest recovery time.

There are many open research questions such as how to

organize the coherence controllers in the right way, how to

reduce overhead on the use of distributed data store, and how

to make the switch migration, how to run applications on

distributed controllers, what is the better controllers

placement.

6. Conclusion

Software-defined networking (SDN) has been developed

rapidly and is now used by early adopters such as data center.

It provides immediate savings in capital costs by replacing

owner’s routers with switches and controllers raw materials,

abstractions of computer science in network management

offering operational cost savings with functionality and

performance improvements too. However there is much

research to be done especially in the area of SDN software.

Controllers are not yet ready for use in production because of

poor performance to work with data center and large scale

network load. Distributed controller is the next step in the

development of SDN/OpenFlow controllers. It is to solve the

reliability and scalability problems of controllers.

References

[1] Ruslan Smeliansky, Alexander Shalimov,”Applied

Research Center for Computer Networks,” Moscow

State University,Moscow, 2013.

[2] T. Koponen, M. Casado, S. Shenker, D. Moon,

“Rethinking Packet Forwarding,” Hardware. In Proc.of

HotNets, Nov. 2008.

[3] Scott Shenker, Michael J. Freedman, Justin Pettit,

Jianying Luo, Natasha Gude, Nick McKeown, Martin

Casado,“Rethinking enterprise network control,”

IEEE/ACM Transactions on Networking (TON), v.17

n.4, p.1270-1283, August 2009.

[4] Michael J. Freedman, Jianying Luo, Nick McKeown,

Justin Pettit, Scott Shenker, Martin Casado,”Ethane:

Taking Control of the Enterprise,” Kyoto, Japan, August

2007.

[5] Tom Anderson, Hari Balakrishnan, Nick McKeown,

Guru Parulkar, Jennifer Rexford , Scott Shenker,

Jonathan Turner, Larry Peterson, “OpenFlow: enabling

innovation campus networks,” Computer

Communication Review, v.38 n.2, April 2008.

[6] J. Hamilton, “Data work center networks are my way,” at

Stanford Clean Slate Summit, 2009.

Paper ID: SUB153618 2205

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[7] R. Ramanthan,T. Koponen, S. Shenker S. , M.

Casado,”Virtualizing the Network Forwarding Plane,” In

Proc. PRESTO November 2010.

[8] J. Pettit, T. Koponen, M. Casado, S. Shenker, B.

Pfaff,”Extending Networking into Virtualization Layer,”

HotNets-VIII, Oct. 22-23, 2009.

[9] J. Gross, B. Pfaff, M. Casado, S. Crosby, J. Pettit,

“Virtual Switching in Era of Advanced Edges,” 2
nd

Workshop on Data Center Converged and Virtual

Ethernet Switching , 22, Sep. 6, 2010 .
[10] “Documentation: Open Networking Foundation,”

https://www.opennetworking.org.

[11] “Openflow,” http://www.openflow.org.

[12] “Openflow documentation and specification,”

http://www.openflow.org/wp/documents.

[13] Koponen, T., Pfaff, B., Pettit, J., Casado, M., McKeown,

N., Shenker, Gude, N.,”NOX: towards an operating

system for networks,” Computer Communication Review

38, 3 (2008), 105-110.

[14] “Pox specification and documentation,”

http://www.noxrepo.org/pox/about-pox/.

[15] “Beacon specification and documentation,”

https://openflow.stanford.edu/display/Beacon/Home.

[16] “Floodlight documentation on ,”

http://floodlight.openflowhub.org/

[17] “Mul specification and documentation,”

http://sourceforge.net/p/mul/wiki/Home/

[18] “Cbench specification and documentation,”

http://www.openflow.org/wk/index.php/Oflops

[19] Zheng Cai, “Maestro: Achieving Coordination and

Scalability in Centralized Network Control Plane,”

Thesis, Rice University, 2011.

[20] “Ryu documentation on,” http://osrg.github.com/ryu/

[21] Luigi Rizzo, “netmap: anovel framework for fast packet

I/O,” Usenix’12, June 2012.

[22] “Packet Processing and Enhanced with Software from

Intel DPDK,” http://intel.com/go/dpdk.

[23] Aditya Akella, David A. Maltz, Theophilus Benson,

“Network traffic characteristics and data centers in the

wild,” IMC, 2010.

Paper ID: SUB153618 2206

