
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Performance Evaluation of Clone Detection Tools

Shilpa Dang
1
, Shahid Ahmad Wani

2

1Assistant Professor, Department of MMICT&BM, Maharishi Markandeshwar University Mullana, Amballa, Haryana, India

2Research Scholar, Department of MMICT&BM, Maharishi Markandeshwar University Mullana, Amballa, Haryana, India

Abstract: Code clones are code portions which are similar in syntax or semantics. Copy-paste activity is the main reason for

introducing clones in a software system. These clones must be identified and removed from a system to improve the quality of a software

system. Various clone detection tools have been proposed that provide assistance to professionals in identifying code clones and once

identified clones can be removed from software systems. These clone detection tools implement different clone detection techniques and

have different approach in detection of clones. This study presents an investigation of clone detection tools to understand the

performance of each tool and to judge the usefulness and accuracy of clone detection tools. This study can be helpful while making a

selection of a particular tool for detection of clones in a software system.

Keywords: Abstract Syntax Tree (AST), Program Dependence Graph (PDG), String Matching, Precision and Recall.

1. Introduction

In software programs a code segment which is similar to

another code segment is known as code clone. The main

reason for introducing clones in software systems is the

commonly practiced copy-paste activity. There are other

reasons through which clones can also exist in system such

as risk avoidance, accidental cloning, etc. It has been agreed

that clones have a serious effect on software system. Shahid

et. al. performed an industrial study that and found that

clones have a harmful impact on software quality [1].

Therefore it is significant to identify and remove clones

from a software system. There are various clone detection

techniques and their corresponding tools available in

literature proposed by the renowned researchers which assist

people to identify clones in software systems and once

identified clones can be removed from these systems by

source code refactoring to improve quality of software

system. Refactoring is the process of changing a software

system to improve its internal structure without modifying

the external behavior of source code. The clone detection

tools available are based on different techniques and thus

have a distinct approach in finding code clones [2]. For

example, a clone detection tool which is based on text-based

technique can only detect clones that are similar in syntax, a

tool which uses token based approach can identify modified

copy pasted code and an Abstract Syntax Tree (AST) based

tool can identify variations in variable names and identifiers

of the similar code. Each tool has its own advantages and

limitations. Therefore in order to find the best tool for a

particular purpose of interest evaluation of clone detection

tools is important. These tools were evaluated and the results

found are presented in this paper.

2. Clone Detection Tools

In literature many clone detection tools are available which

are used to detect clones in software systems. These clone

detection tools implement various clone detection techniques

such as Abstract Syntax Tree (AST), Program Dependence

Graph (PDG), code metrics, program tokens, visualization

and query based techniques which provide an automated

assistance to identity code clones in source code. In spite of

great success of clone detection tools, little work has been

done to present the comparison of these tools. The

comparison of these tools can help software professionals in

making the right decision while selecting a tool of their

interest. Table 1 provides a list of few clone detection tools

available in literature and presents the significant detail

about each tool such as the author who proposed the tool,

language supported by tools, technique implemented and

application field of tools.

Table 1: List of Clone Detection Tools

Tool Proposed By Language Supported Technique Application

CloneDr Baxter et. al., [3] C, C++, Java and Cobol Abstract Syntax Tree Method Clone Detection

CCFinder Kamiya et. al., [4] C, C++, Java Token Based Method Clone Detection

CP-Miner Li et. al., [5] C, C++, Java Frequent Subsequent Mining Clone Detection and copy-pasted

bug identification

Bauhaus Bellon [6] C, C++, Java Abstract Syntax Tree Clone Detection

Coogle Sager et. al., [7] Java Abstract Syntax Tree Finding identical java class

Deckard Jiang et. al. [8] C, Java Tree Matching, Euclidean space Clone Detection

CCFnderX Kamiya et. al., [9] C, C++, Java, COBOL,

VB, C#

Token Based Approach Clone Detection

PMD Sourcefourge

community [10]

Java, C, C++, JSP, Ruby,

PHP, PLSQL etc

String Matching Clone Detection

PDG-Dup Komondor et.al., [11] C,C++ Program Dependence Graph Clone Detection

Duplix Krinke et. al., [12] C Program Dependence Graph Clone Detection

Paper ID: SUB153536 1903

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3. Evaluation of Tools

In Table 1 a total of 10 clone detection tools are listed,

however this study investigated four clone detection tools

which are CP-Miner, PMD (Programming Mistake

Detector), CCFinderX and Bauhaus. The reason for

selecting these tools is that they implement different

techniques for clone detection and thus produce distinct

results.

In this section the results of an experiment conducted with

the four clone detection tools are presented. Each one of the

four clone detection tools was run with an open source

software program to evaluate them. The tools were

evaluated based on the factors like number of clones

detected, types of clones identified by the tools, precision

and recall of the clone detection tools. Precision means that

tool should be good enough so that it detect less number of

false positives i.e. the tool should find duplicated code with

higher precision and recall means that the tool should be

capable of locating and finding most (or even all) of the

clones of a system of interest. This study used the source

code of EIRC (Eteria Internet Relay Chat) program as a

subject system. It is written in java and contains 65 files with

11 thousand lines of code.

3.1 Number of Clones Identified

The tools did not find the same number of clones. Table 2

shows the number of clones identified by each tool. The

distinction in the number of clones detected is based on the

type of clones a tool can identify. A tool that cannot detect

type-3 clones will identify less number of clones.

From table 2 it can be seen that PMD identified largest

number of clones 957, however CP-Miner identified the

least number of clones 783. It can be seen that there is less

difference in the detection of clones by Bauhaus and CP-

Miner, as Bauhaus detected only 14 clones more than CP-

Miner and thus these two tools are comparatively similar in

number of identified code clones. CCFinderX detected 26

clones more than Bauhaus and 40 number of clones more

than CP-Miner. If number of clones detected is considered

as the base of comparison among these tools then PMD is

found to be the best tool. Figure 1 shows the percentage of

clones identified by each tool.

3.2 Type of Clones Identified

Code clones are classified in four different types which are

type-1, type-2, type-3 and type-4. A brief description of each

type is given as under:

 Type-1: Identical code fragments except small variations

in white space, layout, and comments.

 Type-2: Syntactically identical code fragments except for

variations in literals, identifiers, types, layout, comments

and whitespaces.

 Type-3: These are copied fragments with additional

modifications such as changed, added or removed

statements, in addition to variations in identifiers, literals,

types, layout, comments and whitespaces.

Table 2: Number of Clone Identified by Tools

Tool Number of Clones

Identified

Percentage of Clones

Identified

PMD 957 7.36%

CCFinderX 823 6.33%

CP-Miner 783 6.02%

Bauhaus 797 6.13%

Figure 1: Percentage of Clones Identified

Type-4: Two or more code fragments that perform the same

computation but are implemented by different syntactic

variants.

It is found that none of the clone detection tool is able to

find the type-4 code clones. Table 3 shows the type of clone

identified by each tool. The variation in the type of clones

detected by each tool is based on the fact that each tool

implements a different algorithm or technique. The simpler

type clones i.e. type-1 and type-2 are easy to locate and thus

are identified by all of the four tools; however type-3 clone

is not identified by all tools.

PMD and CCFinderX are able to find the type-3 as well as

type-1 and type-2 clones. CP-Miner and Bauhaus tools could

Paper ID: SUB153536 1904

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

only detect type-1 and type-2 clones. If type of clones

detected is considered as the basis of comparison of tools

then it can be concluded that PMD and CCFinderX are the

better tools.

3.3 Precision and Recall of Tools

Precision and recall are the two important factors considered

while comparing the clone detection tools. A brief

description of each is given below:

1. Precision: The tool should be good enough so that it

detect less number of false positives i.e., the tool should

find duplicated code with higher precision. It is

calculated as:

2. Recall: The tool should be capable of locating and

finding most (or even all) of the clones of a system of

interest. It is calculated as:

A tool with higher precision and recall values is considered

as a better tool. Table 4 shows the precision and recall of

each tool calculated as the result of this study. It can be seen

from the table that precision and recall for PMD and

Bauhaus tools are complementary i.e. if precision is high

then recall is low and vice versa. Figure 2 shows the

precision and recall values of each tool

Table 3: Type of Clone Identified

Tool Type of Clones Identified

Type-1 Type-2 Type-3 Type-4

PMD Yes Yes Yes No

CCFinderX Yes Yes Yes No

CP-Miner Yes Yes No No

Bauhaus Yes Yes No No

Table 4: Precision and Recall of Tools.
Tool Precision Recall

PMD 0.46 0.59

CCFinderX 0.56 0.51

CP-Miner 0.41 0.48

Bauhaus 0.81 0.49

Figure 2: Precision and Recall of Tools

PMD has a highest recall value however it’s precision is not

that good which means that it finds maximum number of

clones but with large number of false positives. Bauhaus has

the highest value for precision of all the tools but its recall

value is very small compared to its precision which means

that most of the clones detected by this tool are true clones

with less number of false positives but it fails in detecting

most of the clones. There is not much difference in the

precision and recall values of CCFinderX and CP-Miner.

CP-Miner has the lowest precision and recall values among

all the tools. CCFinderX has little difference in the values of

precision and recall which means that this tool is detects

most of the clones with less number false positives.

If precision and recall of each tool is considered for the

comparison of tools then it is very difficult to decide which

tool is best as all the tools behave complementary for

precision and recall values. PMD has the highest value for

precision but its recall is small, similarly Bauhaus has the

highest value for recall and its precision is not good. The

only tool that has smaller difference in precision and recall

values is CCFinderX.

4. Conclusion

This paper presented a comprehensive study of four clone

detection tools which are PMD (Programming Mistake

Detector), CCFinderX, CP-Miner and Bauhaus. The

specification of each tool is presented. The results were

obtained by applying clone detection tools to a subject

system known as EIRC (Eteria Internet Relay Chat) which is

a chat program often used for clone detection studies. PMD

and CCFinderX were able to detect type-1, type-2 and type-

3 clones and no tool was able to find type-4 clones. The

results show that precision and recall of tools behave

complementary and each tool may have a different use. The

Paper ID: SUB153536 1905

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

results of the study suggest that each tool has its own

advantages and disadvantages and no tool overcome the

other.

References

[1] Shahid Ahmad Wani and Shilpa Dang, “Survey Based

Analysis of Effect of Code Clones on Software

Quality”, IJERT, ISSN: 2278-0181, Vol. 4(3), pp. 371-

379, 2015.

[2] Shahid Ahmad Wani and Shilpa Dang, “A comparative

study of clone detection tools”, ISSN: 2321-7728,

IJARCSMS, Vol. 3(1), pp. 37-41, 2015.

[3] I. Baxter, A. Yahin, L. Moura, M. S. Anna, “Clone

Detection Using Abstract Syntax Trees”, In Proceedings

of the 14th International Conference on Software

Maintenance (ICSM'98), pp. 368-377, Bethesda,

Maryland, November 1998.

[4] T. Kamiya, S. Kusumoto, Katsuro Inoue, “CCFinder: A

Multilinguistic Token-Based Code Clone Detection

System for Large Scale Source Code”, Transactions on

Software Engineering, Vol. 28(7): 654- 670, July 2002.

[5] Z. Li, S. Lu, S. Myagmar, Y. Zhou, “CP-Miner: A Tool

for Finding Copy-paste and Related Bugs in Operating

System Code”, In Proceedings of the 6th Symposium on

Operating System Design and Implementation

(OSDI'04), pp. 289-302, San Francisco, CA, USA,

December 2004.

[6] S. Bellon and V. von, “techniken zur erkennung

duplizierten quellcodes”, Diploma Thesis, No. 1998,

University of Stuttgart (Germany), Institute for

Software Technology, September 2002.

[7] T. Sager, A. Bernstein, M. Pinzger, C. Keifer,

“Detecting Similar Java Classes Using Tree

Algorithms”, In Proceedings of the 2006 International

Workshop on Mining Software Repositories (MSR'06),

pp. 65-71, Shanghai, China, May 2006.

[8] L. Jiang, G. Misherghi, Z. Su, and S. Glondu,

“DECKARD: Scalable and Accurate Tree-based

Detection of Code Clones”, In Proceedings of the 29
th

International Conference on Software Engineering

(ICSE'07), pp. 96-105, Minnesota, USA, May 2007.

[9] http://ccfinder.net

[10] http://www.pmd.sourcegefourge.net

[11] R. Komondoor and S. Horwitz, “Tool demonstration:

Finding duplicated code using program dependences”,

In Proceedings of the European Symposium on

Programming (ESOP'01), Vol. LNCS 2028, pp. 383386,

Genova, Italy, April 2001.

[12] J. Krinke, “Identifying Similar Code with Program

Dependence Graphs”, In Proceedings of the 8th

Working Conference on Reverse Engineering

(WCRE'01), pp. 301-309, Stuttgart, Germany, October

2001.

Paper ID: SUB153536 1906

