
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Introduction to Compilers

Neha Pathapati
1
, Niharika W. M.

2
, Lakshmishree .C

3

1, 2, 3 M.S.Ramaiah Institute of Technology, MSR Nagar, MSRIT Post, Bangalore – 560 054, India

Abstract: A compiler translates the source language code into a target language code. This translation takes place through a number

of phases. So, we can structure the compiler as collection or combination of many phases or passes, where each pass performs a single

task. This paper outlines the various phases of the compiler and the tools which are used to construct a lexer and a parser. The actions

that take place in each and every phase of the compiler are illustrated using an example. The main intention of this paper is to provide

an insight into the basic knowledge of a compiler, as well as provide a springboard for a more detailed study on this topic.

Keywords: lexer, parser, lexeme, token

1. Introduction

A programming language is a formal constructed language

that is designed to communicate instructions to a machine,

particularly a computer. The world as we know it is

dependent on programming languages, as all the software

running on all computers is written in some programing

language. Computer programs are formulated in one of the

programming language among numerous choices available

and specify classes of computing processes. However,

computers interpret sequences of particular instructions and

not the program texts. Therefore, the program should be

translated into an apposite instruction sequence before it can

be processed by a computer. It is possible for this translation

to be automated, which implies that it itself can be

formulated as a program. The translation program is called a

compiler.

A compiler is a special program that translates a program

written in a high-level programming language (source code),

suitable for human programmers into an equivalent low-

level machine language (object code) that can be executed

by the computer’s processor. Thus, the primary reason for

the conversion of the source code is to generate an

executable program, into which the input can be fed to

obtain the required output.

The term compilation defines the conversion of an algorithm

that is expressed in a human-oriented source language to an

equivalent algorithm expressed in a hardware-oriented target

language.

The most significant functionality of the compiler lies with

its ability to apprise the programmer of the errors that it has

detected in the source program during the process of

translation. Figure.1. illustrates the methodology of a

compiler [4].

Figure 1: Methodology of a Compiler

Every language is said to have a syntactic and a semantic

aspect. The syntax is responsible for prescribing which texts

are grammatically accurate and the semantics specifies how

to derivethe meaning from a text that is syntactically correct.

A concise definition of the syntax and semantics of the

source language and the target language is essential, that is,

the source language and the target language should be

formal. The compiler performs a reliable translation, that is,

the machine language statements generated by the compiler

should have the same semantic meaning as that of the source

language statements. Thus, a compiler is Semantic

Preserving [1].

2. Phases of a Compiler

The functioning of the compiler is organized into a series of

six phases. Each phase accepts as input the intermediate

form of the program that has been generated in the

preceeding phase. Thus, the subsequent phases of the

compiler operate on lower-code representations. The key

phases include of a compiler are -

(a) Lexical Analysis

(b) Syntax Analysis

(c) Semantic Analysis

(d) Intermediate Code Generation

(e) Code Optimization

(f) Target Code Generation [2].

The phases of a compiler may be broadly categorized into

the following two parts:

Analysis Part – The Front End

In the analysis part, the source program is fragmented into

constituent pieces and a grammatical structure is imposed on

each of them, which is then used to generate an intermediate

representation of the input source program. All the syntactic

and the semantic shortfalls are reported to the programmer

for the appropriate corrective action to be taken. A data

structure, the symbol table in which each identifier in a

program's source code is associated with information

relating to its declaration or appearance in the source

program, such as its type, scope level and sometimes its

location in the input source program is constructed and

maintained. The symbol table and the intermediate

representation is passed on to the Synthesis part. The

analysis part can be mapped into the following phases of the

compiler:

(a) Lexical analysis

Paper ID: SUB153522 2399

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

(b) Syntax analysis
(c) Semantic analysis[2].

Synthesis Part – The Back End

The synthesis part takes in as input the intermediate

representation and the information in the symbol table. An

equivalent target program is produced. The synthesis part

can be mapped to the following phases:

(a) Code Generation Phase
(b) Code Optimization Phase[2].

Each phases of the compiler which interacts a symbol table

and an error handler. Hence, this is called as the

analysis/synthesis model of compilation [3]. Figure.2.

illustrates the phases of the compiler [4].

Figure 2: Phases of a Compiler

2.1 Lexical Analysis

The first phase of the compiler is termed as scanning or

lexical analysis. A lexical analyzer, also known as the lexer,

is a pattern recognition engine which reads a string of

individual characters as its input and groups them into

meaningful sequences called lexemes. For each lexeme, a

token of the form,

<token-name, attribute –value>

is generated [2]. Here, the token-name refers to an abstract

symbol to be used in the next phase – Syntax Analysis phase

and the attribute-value is a pointer to the entry in the symbol

table.

Additionally, the lexer also performs the following tasks:

(a) It discards comments and eliminates the characters

(usually white-space, newlines, comments, etc)

separating the tokens.

(b) Provides the tokens generated as input to the next phase

of the compiler – parser or syntax analyzer.

(c) Facilitates the parser in reporting errors detected in the

source program by keeping a track of the line number of

the source program.

(d) The symbol table is constructed, which is useful for

Semantic Analysis and Code Generation.
The primary purpose of the Lexical Analysis phase is to

make the subsequent phase easier [4]. Alternatively, a

lexical analyser can also be termed as a linear analyser, as it

scans the input character-by-character from left to right.

Some notable definitions related to this phase are :

Lex
A set of buffered input routines and constructs. It is

responsible for translating regular expression into lexical

analyser [4].

Token
A basic, indivisible lexical unit or language elements. A

token is a pair consisting of a token name and an optional

attribute value. The token name is an abstract symbol

representing a kind of lexical unit (e.g. a particular keyword,

or a sequence of input characters denoting an identifier). The

token names refer to the input symbols that the syntax

analyser will process[4][2].

Lexeme

They are original string (character sequence) comprised

(matched) by an instance of the token [4].

2.2 Syntax Analysis

Syntax analysis is the second phase of the compiler and is

also known as parsing. The tokens generated during the

lexical analysis phase of the compiler is the input of this

phase which are used to create the tree like structure of the

token list. In the typical structure of syntax tree, the interior

node represents an operation and the children of the node

represent the arguments of the operation [7].

What is important in constructing a syntax tree is to

determine how the leaves are combined to form the tree

structure and how the interior node is labelled. In addition to

this, the parser should identify invalid texts and reject them

by reporting the detected syntax errors [8].

2.2.1 Designing a Parser

To design a parser we must first define a grammar to be

processed, supplement it with connection points and choose

a parsing algorithm. The augmented grammar should be

converted to a form that suits the chosen algorithm. After

this, the actual construction of a parser can be done

manually. Thus the process of parser design is a grammar

design, in which we derive a grammar satisfying the rules of

a particular parsing algorithm [8].

The parser accepts sequence of symbols from the symbolic

table, attaches the symbols to the existing syntactic structure

and outputs the modified structure. If any syntactic errors

exist, the parser invokes error handler to report errors and

aid recover [8]. Figure.3 shows parser information flow.

Paper ID: SUB153522 2400

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3: Parser Information Flow

The parser module provides the parse program which

invokes lexical analyser’s next symbol operation for each

symbol. It reports each connection point by invoking an

appropriate operation of other modules. This invocation is

called parser action [8].

Parser looks ahead the symbols to control parsing. It reads

the next symbol to supply the consecutive symbols in

sequence after accepting each symbol. Using LL or LR

techniques, we can determine the syntactical correctness of

the program. Parser actions that enter declarations into the

table or directly generate code must be introduced by the

programmer. Parser actions include the symbol encoding

from lexical analyser as a parameter to connection

points(also called symbol connections) [8].

Selection of parsing algorithm depends on economic and

implementation considerations. The algorithm should work

under all circumstances. LL algorithms are best suited if no

parser generator is available because the conditions are

easier to verify by hand. Alternatively LR algorithms apply

to large class of grammar because the production applicable

is decided after reduction [8].

2.3 Semantic Analyser

Semantic analyser checks the following from the parse tree

entries:

(a) Data type of first operand (num1)

(b) Data type of second operand (num2)

(c) Checks if + operator is unary or binary

(d) Checks the number of operands supplied to the operator

depending on its type (unary or binary)

(e) Data type of identifier sum

(f) Checks if the data type of both LHS and RHS match in

the assignment statement[10]

2.3.1 Type Checking

The process of checking that each operation satisfies the

type system of the language is called type checking. That is,

all operands in an expression should be of appropriate type

and number. The rules for such operations are defined in

other parts of code like function prototypes and sometimes

they are part of language definition. Type checking can be

done during compilation or execution or both. If each and

every type error is recognized during compilation, then the

language is considered to be strongly typed [9].

Type checking is classified into two types, static and

dynamic.

The type check during compilation is called static. This type

checker takes information from the declarations and stores in

a master symbol table. The type involved in the operations is

checked against the entries in the symbol table. A language

that involves only static type checking cannot be considered

as strongly typed because of the drawbacks of static

checking. During compilation, many type errors might get

away from the notice of type checker. For example, consider

an expression a*b where a and b are assigned values outside

the range of int type or computing the ratio between two

integers which may result in divide by zero [9].

Implementing the type information for data location during

run time is called dynamic type checking. A variable of a

type will include the value as well as a tag indicating the

type. An operation is performed only after checking the type

tags and if the type of the operands is compatible. To

maintain the type integrity, the runtime type system takes

over during execution of program. Dynamic type checking

detects errors which are not identified at the compile time

[9].

Some compilers like C, C++ provide implicit type

conversion or coercion. For example, when addition is

carried out between an integer and floating point values, the

integer value is implicitly promoted to float type. If at any

time a type error occurs in C, a compiled code is inserted to

fix the error. If no conversion is possible then type error

occurs [9].

2.4 Intermediate code Generation

Intermediate representation of the source program is created

in this phase. Intermediate code is the structure on which

translators both built-in and user created operates [12].

Properties of intermediate code:

(a) It should be simple and well defined.

(b) It should have unambiguous semantic structure.

(c) It should be independent of source language and machine

language.

(d) Translation from source to target code must be easy [12].

This representation must be easy to generate and translate

into the target program. Of many forms of representation

that exist today, the most common form is three-address

code(TAC) which does not commit to a particular

architecture and is more like general assemble language.

TAC is a set of simple instructions having at most three

operands [13].

2.5 Code Optimization

In this phase, intermediate language representation is

transformed into functionally enhanced form that results to

an improved target code. Usually “improved” has manifold

interpretations based on the end objectives desired of the

target code, such as a faster code, a more compact code, a

code with a small memory-footprint or a code that consumes

less power [8][9].

To generalize, an optimizer aims to improve the time and

space requirements of the code. Several ways exist in which

code can be optimised, most are uneconomical in terms of

time, as well as space to implement. To list out a few:

(a) removing redundant identifiers,

(b) removing the unreachable sections of code,

(c) identifying common subexpressions,

(d) unfolding loops, and

Paper ID: SUB153522 2401

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

(e) eliminating procedures [9].

There occurs a massive variation to the extent of which

different compilers implement this phase. For instance,

“optimizing compilers” spend a considerable amount of time

in this phase [8].

2.6 Code Generation

In the final phase of the compiler, the transformed

intermediate language is translated into the target language,

usually the native machine language of the system (object

code). The calling of resource and storage decisions, such as

deciding which variables to store into registers and memory

and also the selection and scheduling of the appropriate

machine instructions along with their associated addressing

modes is the primary purpose of this phase [9].

2.7 Symbol Table Management

A data structure that stores all the identifiers (i.e. names of

variables, procedures etc.) of a source program along with

the attributes of each identifier is called a symbol table. The

typical attributes for a variable include:

(a) its type,

(b) the amount of memory it occupies, and

(c) its scope.

(d) For procedures and functions, the typical attributes are:

(e) the number and type of each argument (if any),

(f) the method of passing each argument, and

(g) the type of value returned (if any).

The primary purpose of this symbol table is to facilitate

accelerated and uniform access to identifier attributes

throughout the compilation process. The updation of the

symbol table is generally done during the lexical analysis

and/or syntax analysis phases [9].

3. An Illustrative Example

Consider the input:

𝑑 = (𝑐 + 𝑓) ∗ (𝑐 + 𝑓) (1)

Now, let us have an overview of the working of the different

phases of the compiler with respect to the above input.

3.1 Lexical Analyzer

The lexical analyzer (or lexer) makes an entry into the

symbol table for all the variables declared in the input

program.

The tokens generated will be as follows:

<d,id,1><=,operator>< (,open parenthesis ><c,id,2><+,add

operator><f,id,3><),close parenthesis><*,multiplication

operator>< (,open parenthesis><c,id,2><+,add

operator><f,id,3><),close parenthesis>

Here, id refers to identifier and the values 1, 2, and 3 refer to

the entry of the respective identifiers in the symbol table.

3.2 SyntaxAnalyzer (Parser)

In this phase, the input is checked with respect to a grammar

G.

Consider grammar G as follows:

E->variable=E

variable->identifier

E->E*E

E-> (E)

E->E+E

E->number

E->identifier

The parse tree generated would be as follows, as shown in

Figure.4.

Figure 4: Parse tree

3.3 Semantic Analyzer

In this step, the meaning of the expression or statement is

checked. Suppose, for the above input the variables were

declared as:

floatc,f;

int d;

Then, type conversion or coercion takes place. That is, the

result of (c+f)*(c+f) is computed, which is a float, which is

later converted into an integer.

3.4 Intermediate Code Generator

The compiler generates temporary variables to store the

intermediate result.

t1:=c+f

t2:=c+f

t3:=t1*t2

d:=t3

3.5 Code Optimizer

The optimization of code takes place as follows:

t1:=c+f

t2:=t1*t1

d:=t2

3.6 Code Generator

The compiler generates an assembly language code. This

assembly language code is then converted into machine

language by the assembler.

Paper ID: SUB153522 2402

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Load R1,c

Load R2,f

Add R1,R2

Store t1,R1

Mul R1,R1

Store t3,R1

Store d,R1

4. Lex and Yacc

4.1 Lex

Lex is a tool that is used for constructing a lexical analyzer.

The main function of a lexical analyzer is to divide the input

into tokens, that is, it performs tokenization or in other

words, it generates tokens. The output produced or generated

by the lexical analyzer form the input for the next phase of

the compiler, which is the parser. These tokens are usually

processed by a tool known as yacc (to be discussed later).

In a lex program, the user defines a set of patterns, which is

compared with the given input. The set of specifications

given to a Lex is known as Lex specification. If a match is

found, the lex program uses the C code provided by the user.

Lex itself doesn’t produce an executable program; instead it

translates the lex specification into a file containing a C

routine called yylex(). Your program then calls yylex() to

run the lexer. The set of patterns defined by the user is also

known as regular expression. Lex uses a number of special

characters to define a pattern. These expressions are

matched by first determining the longest matching

expression [6].

We write an input file, known as lex.l which clearly

describes the lexical analyzer to be generated. The Lex

compiler transforms this input file into a C program named

lex.yy.c. This file is then compiled by the C compiler and is

stored in a.out. The C compiler produces an output which

consists of a lexical analyzer that takes a stream of

characters as an input and then produces a stream of tokens

[2].

4.1.1 Regular Expressions

A regular expression is a pattern description using a “meta”

language, a language that you use to describe particular

patterns of interest. The characters used in this meta

language are part of the standard ASCII character set used in

UNIX and MS-DOS.

Some of the characters that are used in regular expression

are:

. –Used to match any single character except “\n”

[] – This denotes a character class. Characters are written

inside []. Character classes matches one of the characters

written inside [] the range of characters present inside []. For

example, writing [A-D] is the same as writing [ABCD]

where either A or B or C or D will be matched. If the

character class is followed by a *, it indicates that one or

more of the characters will be matched.

{} –This indicates how many times the pattern preceeded by

this is allowed to match when containing one or two

numbers. For example, Z {1, 4} matches one to four

occurrences of the letter Z.

+ - This matches one or more occurrences of a particular

symbol or a character class. For example,[A-D]+ matches

“A”,”AA”,”BCA”, etc. but not an empty string.

? - Matches zero or one occurrence of the preceding regular

expression.

/ - Matches the preceding regular expression but only if

being followed by the following regular expression. For

example:

0/1

matchesthe “0” in the string “01” but would not match

anything in the strings “0” or “02”.

4.1.2 Example of Lex Specification for Decimal Numbers

%%

[\n\t] ;

-?(([0-9]+)|([0-9]*\.[0-9]+)([eE][-+]?[0-9]+)?) {

printf("number\n"); }

. ECHO;

%%

main()

{

 yylex();

}

The above lex program ignores whitespace and echoes any

characters it doesn’t recognize as parts of a number to the

output [5][11].

4.1.3 Conflict Resolution in Lex

When there are several prefixes of the given input string that

match with two or more patterns which are defined, then the

following points have to be taken into consideration:

a) Always prefer the longer prefix to the shorter one.

b) If the longest possible prefix matches two or more

patterns, give preference to the pattern which is listed

first in the Lex program [2].

4.2 Yacc

Lex recognizes or identifies regular expressions, whereas

Yacc recognizes grammars. The tokens generated by the Lex

are grouped together logically by Yacc. Yacc uses the

grammar specified by the user and writes a parser which in

turn recognizes “sentences” present in a grammar.

Grammars are a series of rules that is used by the parser to

recognize syntactically valid input. For example,

 stmt → name = expr

 expr → number + number | number – number (2)

In this grammar, stmt is the start symbol.The vertical bar,

“|”, implies that there are two possibilities for the same

symbol, i.e. an expression can be number + number or

number − number. The symbol present on the left of the

arrow (→) is known as the left-hand side of the rule

(abbreviated LHS), and the symbols to the right are the

right-hand side (usually abbreviated RHS) [5].

Symbols that actually appear in the input and which are

returned by the lexer are known as terminal symbols or

tokens, while the symbols that appear on the left-hand side

of some rule are non-terminal. Terminal and non-terminal

Paper ID: SUB153522 2403

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

symbols must be different; it is an error to write a rule with a

token on the left side [5].

The working of a yacc parser begins by looking for rules

that might match the tokens seen so far. When yacc

processes a parser, it creates a set of states each of which

reflects a possible position in one or more partially parsed

rules. As the parser reads tokens, each time it reads a token

that doesn’t complete a rule it pushes the token on an

internal stack and switches to a new state reflecting the

token it just read. This action is called a shift. When it has

found all the symbols that constitute the right-hand side of a

rule, it pops the right-hand side symbols off the stack,

pushes the left-hand side symbol onto the stack, and

switches to a new state reflecting the new symbol on the

stack. This action is called a reduction, since it usually

reduces the number of items on the stack. Whenever yacc

reduces a rule, it executes user code associated with the rule.

It is also possible to write grammars that the yacc cannot

handle. It cannot deal with ambiguous grammars, which is a

context-free grammar for which there exists a string that can

have more than one leftmost derivation or rightmost

derivation.

4.2.1 Error Reporting

Error reporting should give as much information about the

error as possible. The yacc error only indicates that a syntax

error exists and parsing should be stopped. The different

errors can be classified as:

a) General syntactic errors (e.g., a line that has no meaning)

b) A non-terminated string

c) The wrong type of string (quoted instead of unquoted or

vice versa)

d) A premature end-of-file

e) Use of duplicate names

Error correction is not the responsibility of yacc alone, but

also the lex, where fundamental errors are better detected

[5].

4.3 Lexer Parser Communication

When a lex scanner and a yacc parser are used together, the

parser is the higher level routine. It calls the

lexeryylex()whenever it needs a token from the input. The

lexer then scans through the input to recognize tokens. On

finding a token of interest to the parser, it returns to the

parser, returning the token's code.Not all tokens are of any

importance to the parser. In many programming languages

the parser doesn't give importance to comments and

whitespace,etc. For such token which are not of importance,

the lexer continues on to the next token without bothering

the parser [6].

Semantic Analysis

This phase deals with checking the meaning of statements

parsed in the parse tree to know if they form a meaningful

set of instructions in a programming language. A program is

said to be semantically correct, all the variables, functions,

classes, expressions must be properly defined and must

respect the type system. The Semantic Analyzer thus

performs name and type resolution that is, it weeds out the

possible ambiguities and errors in the program [9].

In languages where identifiers have to be declared before

they are used, as new declarations are encountered, the

semantic analyzer identifies and records the type of the

identifier. The following checks are performed in the phase.

As the examination of the program proceeds, the semantic

analyzer checks if the type of identifiers is respected in

operations encountered. For example, the type of right hand

side expression in an assignment statement should match the

type of left hand side identifier. The type and number of

arguments in a function call should match the parameters of

the function. Other examples include unique identifier

declaration which prevents two global identifiers from

having the same name [9].

5. Conclusion

This paper outlines the elemental aspects of the most

popularly used translator in today’s computing world, a

compiler. The working principle of a compiler and its

sequence of phases in translating a source program into a

target program are described in-depth. Furthermore, the

operation of the compiler tools – lex and yacc, is also

illustrated. The primary purpose of this report is to provide

an explanatory and detailed introduction to the fundamental

concepts of compilers, which is of ultimate significance to

any undergraduate student.

6. Acknowledgement

We would like express our sincere gratitude to

Dr.K.G.Srinivasan, the Head of Computer Science

Department of M.S.Ramaiah Institute of Technology, for

giving us the opportunity and the much needed

encouragement to venture into writing a technical paper. We

are also very obliged and thankful to Ms.Parkavi A,

ourhonourable faculty member and project guide for

providing valuable guidance and feedback throughout the

process of writing this paper. Their assistance is unmatched.

References

[1] D. Vermeir, An introduction to compilers – DRAFT,

Dept. of Computer Science, VrijUniversiteit Brussel,

February 2009.(book style)

[2] Alfred V. Aho, Monica S.Lam, Ravi Sethi, et al,

Compilers Principles, Techniques and Tools, 2nd ed,

Addision, 2006. (book style)

[3] Dr. Matt Poole 2002, edited by Mr. Christopher

Whyley, 2nd Semester 2006/2007, Compilers,

Department of Computer Science, University of Wales

Swansea,www.compsci.swan.ac.uk/~cschris/compilers

(general internet site)

[4] Biswajit Bhowmik1, Abhishek Kumar, Abhishek

Kumar Jha, et al, “A New Approach of Complier

Design in Context of Lexical Analyzer and Parser

Generation for NextGen Languages”, International

Journal of Computer Applications (0975 – 8887),

Volume 6– No.11, September 2010. (journal style)

[5] https://www.safaribooksonline.com/library/view/lex-

yacc/9781565920002/ch01.html (General Internet site)

Paper ID: SUB153522 2404

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[6] http://dinosaur.compilertools.net/lex/(General Internet

site)

[7] http://www.ijetae.com/files/Volume4Issue3/IJETAE_03

14_87.pdf. (General Internet site)

[8] http://symbolaris.com/course/Compilers/waitegoos.pdf.

(General Internet site)

[9] http://web.stanford.edu/class/archive/cs/cs143/cs143.11

28/handouts/180%20Semantic%20Analysis.pdf.

(General Internet site)

[10] http://www.c4learn.com/c-programming/semantic-

analysis/. (General Internet site)

[11] lex&yacc, 2nd Edition,By Doug Brown, John Levine,

Tony Mason, O'Reilly Media, October 1992. (book

style)

[12] RESEARCH PAPER ON PHASES OF COMPILER,

Charu Arora, Chetna Arora, Monika

Jaitwal,2014,INTERNATONAL JOURNAL OF

INNOVATIVE RESEARCH IN TECHNOLOGY

[13] http://web.stanford.edu/class/archive/cs/cs143/cs143.11

28/handouts/020%20CS143%20Course%20Overview.p

df. (General Internet site)

Author Profile

Neha Pathapatiis pursuing 3rd year B.E in Computer Science at

M.S.Ramaiah Institute of Technology.

Niharika W.Mis pursuing 3rd year B.E in Computer Science at

M.S.Ramaiah Institute of Technology.

Lakshmishree Cis pursuing 3rd year B.E in Computer Science at

M.S.Ramaiah Institute of Technology.

Paper ID: SUB153522 2405

http://dinosaur.compilertools.net/lex/
http://www.ijetae.com/files/Volume4Issue3/IJETAE_0314_87.pdf
http://www.ijetae.com/files/Volume4Issue3/IJETAE_0314_87.pdf
http://symbolaris.com/course/Compilers/waitegoos.pdf
http://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/180%20Semantic%20Analysis.pdf
http://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/180%20Semantic%20Analysis.pdf
http://www.c4learn.com/c-programming/semantic-analysis/
http://www.c4learn.com/c-programming/semantic-analysis/
http://shop.oreilly.com/product/9781565920002.do#tab_04_2
http://shop.oreilly.com/product/9781565920002.do#tab_04_2

