
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Developing Firefox add-on for DOM vulnerability

Assessment

Saranraj Ilangovan
1
, Geogen George

2

Master‟s in Information Security and Cyber Forensics Cyber security Research Center, SRM University SRM Universirty.Chennai, India

Abstract: Cross-site scripting (XSS) is a type of security vulnerability typically found in web applications which allows the attackers to

inject malicious script into web pages/servers. XSS is the main cause of DOM attack.This add-on is a penetration testing tool to detect

DOM vulnerabilities in Web Applications. This tool detects the DOM vulnerabilities based on xss vulnerabilities in the web page. It

provides a penetration tester the ability to test all kinds of xssvulnerabilities. This add-on will be useful for web application developers in

detecting DOM vulnerabilities early in the development process will help protect a web application from unnecessary flaws.

Keywords: Vulnerability Testing; Cross-site scripting; Web Applications; Security; Code Insertion;

1. Introduction

Most Web sites today add dynamic content to a Web page

making the experience for the user more enjoyable.

Dynamic content is content generated by some server

process, which when delivered can behave and display

differently to the user depending upon their settings and

needs. Dynamic Web sites have a threat that static Web sites

don't, called "cross-site scripting," also known as "XSS."

"A Web page contains both text and HTML markup that is

generated by the server and interpreted by the client

browser. Web sites that generate only static pages are able to

have full control over how the browser user interprets these

pages. Web sites that generate dynamic pages do not have

complete control over how their outputs are interpreted by

the client. The heart of the issue is that if untrusted content

can be introduced into a dynamic page, neither the Web sites

nor the client has enough information to recognize that this

has happened and take protective actions," according to

CERT Coordination Center, a federally funded research and

development center to study Internet security vulnerabilities

and provide incident response.

Cross-site scripting is gaining popularity among attackers as

an easy exposure to find in Web sites. Every month cross-

site scripting attacks are found in commercial sites and

advisories are published explaining the threat. Left

unattended, your Web site's ability to operate securely, as

well as your company's reputation, may become victim of

the attacks.

2. Literature Review

The web technologies were invented for the betterment of

world, but with its advancement threats like spam, malware,

hacking, phishing, denial of service attacks, invasion of

privacy, defamation, frauds, etc. started taking place. Web

server‟s vulnerabilities were the target for the attackers in

the early days of dot com boom. Microsoft‟s IIS was

vulnerable to those attacks. Attacks on web server were

mainly performed on core server code and on supporting

library. Those attacks were basically buffer overflow, input

validation attacks, format string attack, canonicalization

attack, encoding attacks, privilege escalation, form

tampering and user generated content. But the improvement

in security aspects of network and servers reduced the

successful attacks on well-configured web servers. Like

other technologies web applications also faced attacks. The

development of server side languages exposed the web

server for security vulnerabilities. With the popularity of

blogging and web services, forums attackers started taking

interest in web applications. This resulted in some new

attacks like cross site scripting (XSS), SQL injection, and

insecure direct object reference, remote malicious file

inclusion, cross site request forgery, access control

weaknesses, data confidentiality failures and poor error

handling.

Among those attacks XSS is the most common security

vulnerability in today‟s web applications. It is more

dangerous as it provides surface for other type of attacks.

XSS causes danger for victim by the insertion of a piece of

script on client side. This code can be written in any

scripting language. JavaScript is mostly used but use of

other languages is also possible. This attack can also be

deployed through a link in an email or on a web page that

appears to be originated from the hacker‟s site. This work

provides an overview of classification of XSS, threats,

detection methods.

Cross-Site Scripting

Cross-Site Scripting (XSS) attacks are a type of injection, in

which malicious scripts are injected into otherwise benign

and trusted web sites. XSS attacks occur when an attacker

uses a web application to send malicious code, generally in

the form of a browser side script, to a different end user.

Flaws that allow these attacks to succeed are quite

widespread and occur anywhere a web application uses input

from a user within the output it generates without validating

or encoding it.

An attacker can use XSS to send a malicious script to an

unsuspecting user. The end user‟s browser has no way to

know that the script should not be trusted, and will execute

the script. Because it thinks the script came from a trusted

source, the malicious script can access any cookies, session

tokens, or other sensitive information retained by the

browser and used with that site. These scripts can even

rewrite the content of the HTML page. [4]

Paper ID: SUB153449 1635

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Classification of Cross Site Scripting [1]

XSS attacks are generally categorized into following

categories:

 Stored (or persistent)

 Reflected (or nonpersistent).

 DOM based XSS and

 Induced XSS attacks.

 mXSS or Mutation XSS

A. Stored or Persistent XSS

In stored or persistent XSS attacks the injected malicious

code is permanently stored on the target servers. In this type

of attack, attacker first tries to find vulnerability in web

application. If such vulnerability is present in web

application, he injects a malicious script that will be able to

steal user‟s confidential information or cause other damages.

This script then resides permanently on the server. When

any user access this information via web application, the

malicious script gets executed and the confidential

information becomes accessible to attacker. Stored XSS

attacks are generally performed on web applications that

takes input from user in the form of text and store it in the

database of web application. Some examples of these

applications are blogs, forums, comments or profile.

B. Reflected or Non-persistent XSS

As opposed to stored XSS attacks in reflected XSS attacks

the injected code doesn‟t reside on the web server. In

reflected attacks malicious links are sent to victims using

email, or embedding the link in a web page residing on

another server. When user clicks on this link, the injected

code goes to attacker‟s web server, which sends the attack

back to victim‟s browser. Now browser executes the code

because it comes from a trusted server. In this way an

attacker bypass the same origin policy. When this code

executes on browser, it performs the malicious work like

stealing the confidential information of victims.

C. DOM based XSS

DOM Based XSS is an XSS attack where the DOM

environment in the victim‟s browser is modified by the

original client side script, so that the client side code runs in

an “unexpected” manner. In this kind of attack the page

doesn‟t change but the client side code gets executed in a

different manner because of the modification in the DOM

environment. It is different from the other two XSS attacks

as the attack is executed at the client side.

D. Induced XSS

Induced XSS are possible in the web applications where web

server has HTTP Response Splitting vulnerability. As a

result of this vulnerability an attacker can manipulate the

HTTP header of the server‟s response. These types of XSS

are not very common but it is mentioned here for the

completeness of classification. The DOM based and induced

XSS attacks are more severe as they can also affect static

HTML pages.

E. mXSS or Mutation XSS [2]

mXSS or Mutation XSS is a kind of XSS vulnerability that

occurs when the untrusted data is processed in the context of

DOM's innerHTML property and get mutated by the

browser, resulting as a valid XSS vector. In mXSSan user

specified data that appears harmless may pass through the

client side or server side XSS Filters if present or not and get

mutated by the browser's execution engine and reflect back

as a valid XSS vector. XSS Filters alone won't protect from

mXSS. To prevent mXSS an effective CSP should be

implemented, Framing should not be allowed, HTML

documents should specify the document type definition that

enforce the browser to follow a standard in rendering

content as well as for the execution of scripts.

Threats Due to XSS [2]

XSS Tunneling:

XSS Tunnel is the standard HTTP proxy which sits on an

attacker's system. Any tool that is configured to use it will

tunnel its traffic through the active XSS Channel on the XSS

Shell server.

Client side code injection:

Client-side attacks, and particularly code injection at the

client, might be the first thing a layperson thinks of when

they hear about mobile security threats. Client-side injection

in mobile applications works in a way similar to certain

server-side security risks.

DOS:

A denial-of-service (DoS) or distributed denial-of-service

(DDoS) attack is an attempt to make a machine or network

resource unavailable to its intended users.

Cookie Stealing:

A cookie stealer is used to steal the login information of any

unsuspecting victim. Once the link is visited, the cookie of

the user is taken and stored in a text file. They are then

redirected to another page without knowing what has just

happened

Malware Spreading:

Malware includes computer viruses, worms, trojan horses,

ransomware, spyware, adware, scareware, and other

malicious programs. As of 2011 the majority of active

malware threats were worms or trojans rather than viruses.

Phishing:

The fraudulent practice of sending emails purporting to be

from reputable companies in order to induce individuals to

reveal personal information, such as passwords and credit

card numbers, online.

Paper ID: SUB153449 1636

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Defacing:

Website defacement is an attack on a website that changes

the visual appearance of the site or a webpage.

Detecting Cross-Site Scripting [3]

 Insecure JavaScript Practice

 Malicious code between Static Scripts

 Browser-specific Problems

 DOM-based Problems

 Multi-Module Problems

Insecure Javascript Practice

Yue et al. characterize the insecure engineering practice of

JavaScript inclusion and dynamic generation at different

websites by examining severity and nature of security

vulnerabilities. These two insecure practices are the main

reasons for injecting malicious code into websites and

creating XSS vectors. According to their survey results,

66.4% of measured websites has insecure practice of

JavaScript inclusion using src attribute of a script tag to

include a JavaScript file from external domain into top-level

domain document of a web page. Top-level document is

document loaded from URL displayed in a web browser‟s

address bar. Two domain names are regarded as different

only if, after discarding their top-level domain names (e.g.,

.com) and the leading name “www” (if existing); they don‟t

have any common sub-domain name. For instance, two

domain name are regarded as different only if the

intersection of the two sets

 { d1sub2.d1sub1}and { d2sub3.d2sub2.d2sub1}is empty .

 1. www.d1sub2.d1sub1.d1tld

 2. d2sub3.d2sub2.d2sub1.d2tld

Almost, 79.9% of measured websites uses one or more types

of JavaScript dynamic generation techniques. In case of

dynamic generation techniques, document.write(),

innerHTML, eval() functions are more popular than some

other secure methods. Their results show 94.9% of the

measured website register various kinds of event handlers in

their webpage. Dynamically generated Script (DJS) instance

is identified in different ways for different generation

techniques. For the eval() function, the whole evaluated

string content is regarded as a DJS instance. Within the

written content of the document. Write () method and the

value of the innerHTML property, a DJS instance can be

identified by from three source .

 Between a pair of <SCRIPT> and </SCRIPT> tags

 In an event handler specified as the value of an HTML

attribute such as onclick or onmouseover;

 In a URL using the special JavaScript: protocol

specifier.

To eliminate this risk, developers have to avoid insecure

practice of JavaScript, such as they need to avoid external

JavaScript inclusion using internal JavaScript files, eval()

function need to be replaced with some other safe function

Malicious Code between Static Scripts

 User input between any existing scripting codes is vital

issue while detecting XSS. It‟s really hard to find any

method from existing systems that can solve this dilemma

appropriately. There are two types of scripting code in any

webpage. Some of them are static and some of them are

dynamic (composed during runtime). Let‟s begin the discus

on this issue with one example.

<SCRIPT>var a = $ENV_STRING; </SCRIPT>

User given data between static script code In the above

example, both starting both starting and ending tag of script

are static and the user input is sandwiched between them that

make the scripting code executable. But problem is that any

successful injection in this context may create XSS vector.

All strong filters of the existing systems try to find malicious

code from the user input. This kind of situation in static code

may help attackers to circumvent any detecting filter. For

instance, the Samy MySpace Worm introduced keywords

prohibited by the filters (innerHTML) through JavaScript

code that resulted the output as the client end

(eval(„inner‟+‟HTML‟)). On the other hand we cannot

eliminate any static scripting code while filtering because

they are legitimate and there may be a safe user input

between those legitimate codes. So it is hard to isolate and

filter input that builds such construct without understanding

the syntactical context in which they used . So meaning of

the syntax is a vital concern while filtering.

Dom-Based Problems

One of the crucial problems of most existing systems is they

cannot detect DOM-based XSS. So only identifying stored

and reflected XSS is not sufficient for preventing all of XSS

domain and according to Amit Klein‟s article, DOM based is

one of the upcoming injection problems in web world

because nowadays, most of the issues related to other type of

XSS problems are being cleaned up on major websites. So,

bad guys will try for third type of XSS vulnerability. We

already know, DOM-based XSS vector does not need to

appear on the server and it‟s not easy for a server to identify.

So, attackers get extra advantage with this type of XSS

vulnerability. DOM-based XSS is introduced by Amit Klein

in his article and this type XSS can be hidden in the

JavaScript code and many strong web application firewalls

fail to filter this malicious code. In the eXtensible Markup

Language (XML) world, there are mainly two types of

parser, DOM and SAX. DOM-based parsers load the entire

document as an object structure, which contains methods

and variables to easily move around the document and

modify nodes, values, and attributes on the fly. Browsers

work with DOM. When a page is loaded, the browser parses

the resulting page into an object structure. The

getElementByTagName is a standard DOM function that is

used to locate XML/HTML nodes based on their tag name.

Let‟s start to discuss about on this topic deeply with Amit

Klein given example.

Say, the content of http://www.vulnerable.site/welcome.html

as follows:

Paper ID: SUB153449 1637

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

If we analyze the code of the example, we will see that

developer has forgotten to sanitize the value of the “name”

get parameter, which is subsequently written inside the

document as soon as it is retrieved. The result of this HTML

page will be

“Http://vulnerable.site/welcome.html?name=Joe“(if user

input is „Joe‟). However, if the user input is any scripting

code that would result in an XSS situation. e.g.;

“http://vulnerable.site/welcome.html?name=<SCRIPT>ale

rt(document.cookie);</SCRIPT>”

Many people may disagree with this statement and may

argue that still, the malicious code is sending to the server,

and any filter can be used in the server to identify it. Let‟s

see an update version of previous example.

http://vulnerable.site/welcome.html#name=<SCRIPT>alert

(document.cookie)</SCRIPT>

Here sign (#) right after the file name used as fragment

starter and anything beyond this is not a part of query. Most

of the well-known browsers do not send the fragment to

server. So actual malicious part of the code is not appeared

to the server, and therefore, the server would see the

equivalent of

http://www.vulnerable.site/welcome.html

More scenarios on DOM-based XSS are in Amit Klein‟s

article. He suggests that minimizing insecure JavaScript

practice in code may reduce the chances of DOM-based

XSS. Web developer must be very careful when relying on

local variables for data and control and should give attention

on the scenarios wherein DOM is modified with the user

input. Automated testing has only very limited success at

identifying and validating DOM based XSS as it usually

identifies XSS by sending a specific payload and attempts to

observe it in the server response. If we exclude the idea of

(#) sign but may not work in the following contrived case:

For this reason, automated testing will not detect areas that

may be susceptible to DOM based XSS unless the testing

tool can perform addition analysis of the client side code.

Manual testing should therefore be undertaken and can be

done by examining areas in the code where parameter are

referred to that may be useful to attackers. Examples of such

Areas include places where code is dynamically written to

the page and elsewhere where the DOM is modified or even

where scripts are directly executed.

Multi-Module Problems

The vulnerability of a server page is necessary condition for

the vulnerability of web application, but it isn‟t a necessary

condition. That means protecting any single page from a

malicious code never guarantees the protection of entire web

application. Server page may send user data to ot her page or

to any other persistent data store instead of client browser. In

these situations, XSS may occur through another page. Most

of the existing systems don‟t provide any procedure to

handle this difficulty. In the multi-module scenario, data

may be passed from one module to another module using

some session variables and those session variables status are

stored in cookies. Let‟s see the above example. In the above

example, we can see user input is stored into session

variable and later it is stored into $name variable. The

session variable is echoed through different page. So, any

filtering process on $name variable will not effect to session

variable. In this case, any malicious code can create XSS

vector using session variable and can bypass any filtering

process. Bisht, Venkatakrishnan and Balzarotti, Cova,

Felmetsger, Vigna solved Multi-module problem in their

work but most of other tools are not having any technique to

handle it

Paper ID: SUB153449 1638

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3. Design

I am proposing an add-on that will detect reflected, stored,

DOM based cross-site scripting in a webpage. This add-on

will help pentesters and web developers to detect XSS

vulnerability in a webpage. We want to check whether a

website is vulnerable to cross-site scripting attack by add-on

created. The add-on works by submitting the HTML forms

and substituting the form value with strings that are

representative of an XSS strings. If the resulting HTML

page sets a specific JavaScript value

(document.vulnerable=true) then the tool makes the page as

vulnerable to given XSS string.

A report is generated based on the vulnerabilities in the

element.

Modules

Four modules are designed, they are

 Extracting Forms.

 Requesting the server with XSS Strings.

 Analyzing the response.

 Report Generation.

Extracting Forms

All the forms in the web pages are choosed.

Requesting the server with XSS Strings

The HTML forms are submitted with XSS payloads, then

wait for the response from the server.

Analyzing the Response

If the resulting HTML page sets a specific JavaScript value

(document.vulnerable=true) then the tool makes the page as

vulnerable to given XSS string.

Report Generation

A report is generated on the basis of vulnerabilities in the

webpage.

References

[1] Vikas K. Malviya, SaketSaurav, Atul Gupta, ”On

Security Issues in Web Applications throughCross Site

Scripting (XSS)” 2013 20th Asia-Pacific Software

Engineering Conference.

[2] Ajin Abraham, (Author of OWASP Xenotix XSS Exploit

Framework) ”Ultimate xss Protection Cheat Sheet For

Developers”

[3] SumanSaha , “Consideration Points: Detecting Cross-

Site Scripting”, (IJCSIS) International Journal of

Computer Science and Information Security,(2009)

[4] OWASP

Paper ID: SUB153449 1639

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

