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1. Introduction 
 

The occurrence of more cases of a disease than would be 

expected in a community or region during a given time 

period is called an epidemic. An epidemic is the rapid spread 

of infectious disease to a large number of people in a given 

population within a short period of time, usually two weeks 

or less. An epidemic may be restricted to one location; 

however, if it spreads to other countries or continents and 

affects a substantial number of people, it may be termed a 

pandemic [8]. 

 

In mathematics and physics, a deterministic system is a 

system in which no randomness is involved in the 

development of future states of the system [9]. A 

deterministic model will thus always produce the same 

output from a given starting condition or initial state [10]. 

For example, physical laws that are described by differential 

equations represent deterministic systems, even though the 

state of the system at a given point in time may be difficult 

to describe explicitly. Markov chains and other random 

walks are not deterministic systems, because their 

development depends on random choices. 

 

Stochastic means being or having a random variable. A 

stochastic model is a tool for estimating probability 

distributions of potential outcomes by allowing for random 

variation in one or more inputs over time. The random 

variation is usually based on fluctuations observed in 

historical data for a selected period using standard time 

series techniques. Distributions of potential outcomes are 

derived from a large number of simulations which reflect the 

random variation in the input. 

 

In probability theory, a Poisson process is a stochastic 

process that counts the number of events and the time points 

at which these events occur in a given time interval. The 

time between each pair of consecutive events has an 

exponential distribution with parameter   and each of these 

inter-arrival times is assumed to be independent of other 

inter-arrival times. The process is named after the Poisson 

distribution introduced by French mathematician Simeon 

Denis Poisson [5]. It describes the time of events in 

radioactive decay [2], telephone calls [7] or request for 

documents on a web server under certain conditions [1], and 

many other phenomena, where events occur independently 

from each other. The number of arrivals  N t  in a finite 

interval of length t obeys the Poisson  t distribution, 
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Moreover, the numbers of 

arrivals  1 2,N t t  and  3 4,N t t  in non-overlapping 

intervals  1 2 3 4t t t t    are independent.  

 

An infection rate is an estimate of the rate of progress of a 

disease, based on proportional measures of the extent of 

infection at different times. 

 

In probability theory, the probability generating function of 

a discrete random variable is a power series representation 

of the probability mass function of the random variable. 

Probability generating functions are often employed for their 

succinct description of the sequence of probabilities 

 Pr X i  in the probability mass function for a random 

variable X, and to make available the well developed theory 

of power series with non-negative coefficients.  

 

Definition 1.1 [4] 

 

Consider a random variable X, i.e, a discrete random 

variable taking non-negative values. 

Write    , 0,1,2,...kP P X k k    

The probability generating function of X is defined as  
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Note that  1 1,XG   so the series converges absolutely for 
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Theorem 1.2 [4] (Total and Compound Probability) 

Let 1 2, ,..., nA A A  be a partition of  . For any event B,  
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In this paper, we have developed a stochastic epidemic 

model with Poisson infection rate without removal. Poisson 

infection rate is depending on the number of persons 

infected in the system. 

 

2. Epidemic Model 
 

In this section we study the characterizations of the 

stochastic epidemic model with Poisson infection rate 

without removal. 

 

2.1. Stochastic Epidemic Model with Poisson Infection 

Rate without Removal 

 

Let  nP t  be the probability that there are n susceptible 

persons in the system and let m be the number of infected 

persons in the system,    jf m t O t    give the 

probability that the number changes to n j  in the time 

interval   , .t t t  Here j is any positive integer. [3] 

Since, t  is very small and  O t  denotes an 

infinitesimal which is such that  
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So that if 1j  ,   0.jf m   

In this case, let us assume that, 
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 (2) 

The probability that there is no change in the time interval 

 ,t t t  is then given by 

 1
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   (3) 

Using the theorems of total and compound probabilities [3, 

6], we get 

 nP t t   Probability of n susceptible at time t and no 

susceptible at time  

t  + (n-1) susceptible at time t and 1 susceptible at time 

t . 
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So that, 
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Proceeding to the limit as 0,t   we obtain 
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   (By using (1)) 
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For the case when n = 0, 

   0 0P t t P t  There is no susceptible in t . 
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Dividing on both sides by t  and taking the limit as 

0,t   we have 
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  (By using 

(1))
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      (7) 

Multiplying (6) and (7) by x
n
, summing for all n and using 

the definition of the probability generating function [6], 

namely 

   
0

, ,n

n

n

x t P t x




    (8) 

  

We get, 
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By using the result (6), we get 
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Now, the definition of probability generating function, we 

have 

   
0

,0 0 n

n

n

x P x




  

      2

0 1 20 0 0 ...P P x P x     

 ,0 1;x      (11) 

     0

1

, t ;n

n

n

P t x x P t




    (12) 

And         1

1

, tn

n

n

P t x x x






   (13) 

Using the results (7), (12) and (13) in (10), we get 
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Integrating (14) on both sides, we get 
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Taking exponential on both sides, we get 
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  (15) 

Let t = 0 in (15), we get 

 ,0x C   

By using the result (11), we get C = 1. 

Therefore, the result (15) can be written as 
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Hence, the probability generating function of the given 

system is given by 
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So that, 
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Remark 2.2 

 nP t  is a probability function. 

Proof 

If the probability  nP t  is a probability function then 
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Hence, the given probability  nP t  is a probability 

function. 

 

Example 2.3 

 

There are 5000 people living in a town. Initially it was found 

that an epidemic occurred and 1% of the people were 

infected. Also, it was measured that the infection rate is 2.4. 

 

Now, the Poisson infection rate is 𝜆 = 0.2177.  

Hence, the probability of n infections after 4 units of time is 

 
 4 4
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For n = 1,  1 0.3645.P t   
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