
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 4, April 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Comparative Analysis of HBase Data Storage Model 

and RDBMS for Location based Application 
 

Chandrakant Nitnaware
1
, Amreen Khan

2
 

 

Department of Computer Technology, YCCE Nagpur (India) 

 
Abstract: Relational database management system plays important role in the area of storage and management but have limitation on 

scalability in terms of data as well as number of clients. RDBMS is not suitable for spatial database application and very hard to 

maintain the system when data becomes too large. Column oriented database such as Hbase overcome this problem by storing large 

amounts of terabytes of data and providing the system to be fault tolerant and easily available. This paper compares geo-spatial data 

stores in Hbase Data storage model and RDBMS in terms of real time analysis and high insert throughput on latest location. 

 

Keywords: Hbase, NoSQL database, RDBMS, geo-spatial data, Location based application 

 

1. Introduction 
 

Millions of users continuously update their location on real 

time system is quite common now a days. So this has 

generates large volumes of data and leads to a various 

location based services[15] which customizes users 

experience based on location. To trace geographic location, 

Location based services uses the personal handset such as 

smartphone or navigation devices. These services may either 

use network-based technologies or embedded satellite 

navigation receivers to identify the geographic location. 

These location based services [6] use in various types of 

location based applications such as personal navigation, geo 

advertisement, tracking devices, location based social 

networking etc. Relational database management system 

(RDBMS) must handle such growing amounts of data while 

answering real time queries based on location[8]. However, 

relational database systems are not capable of handle high 

insertion rates, real time query and terabytes of data [1]. 

Whereas NoSQL databases like Hbase allows the system to 

sustain high insertion rates, large data volumes while 

ensuring the system to be fault tolerant and high availability 

[1]. 

 

NoSQL is a non-relational database management system 

which is different from traditional relational database 

management system. NoSQL database is suitable for 

efficient mass storage data, concurrent read write operations, 

scalability and high availability on sparse, distributed data. In 

general, NoSQL database is used in distributed system to 

reduce the pressure of main server [4]. The main difference 

in NoSql databases and relational databases is, NoSql 

databases do not need to design schema in advance. It stores 

the big data in order of rowkey. 

 

Hbase is a NoSQL database stores data on disk in column 

oriented format. The basic data unit in Hbase is cell which 

includes the row id, column family name, column name and 

version or timestamp. Each Hbase cell can have multiple 

versions of particular data. Hbase uses Hadoop File System 

(HDFS) as its underlying data storage. At physical level, 

each column family is stored contiguously on disk and data 

is physically sorted by row id, column name and version [3]. 

Hbase handles shifted load and failures gracefully and 

transparently to the clients. 

Section II describes background knowledge of difficulty with 

relational database management system, NoSQL database 

and Hbase. Section III describes the Quad tree index 

structure layer and Hbase data storage layer model. Section 

IV shows the experimental evaluation of nearest neighbor 

query and range query comparison of RDBMS with Hbase. 

We conclude our work in section V.  

 

2. Related Work 
 

Hbase [10], Cassandra [11], MongoDB [12] are the examples 

of NoSQL databases. These NoSQL databases support 

various levels of indexing. Our system uses a quad tree data 

structure which partitions the space into 2
n
 subspaces in a 

systematic manner along all dimensions. 

 

Hbase is an open-source database which works on top of 

Hadoop[13]. It is basically known as column-oriented 

database based on the implementation of Google’s BigTable 

[14]. Hbase database consist of set of tables. Each table 

consists of row, column family, cell and version. A cell 

contains a data and a rowkey and column family name 

uniquely identifies a cell. Each data in a cell have a 

timestamp [13]. 

 

A. Difficulty with Relational Database System 

RDBMS played an integral role when designing and 

implementing business applications which requires storage 

of information. Such type of applications retains information 

about number of users, products, orders [3] etc. So we are 

using rdbms as storage backend providing a persistent layer 

over frontend application server. This works fine when the 

records are limited, but when we have to store large number 

of records then such a type of relational database system 

shows some weakness. 

 

B. NoSQL Database 

A NoSQL database uses the model for storage and retrieval 

of data other than the tabular relations specially used in 

RDBMS. These databases use approach which is simple in 

design, horizontal scaling and high availability. For making 

some operations, NoSQL databases uses key–value pair 

which is differ in case of relational databases. NoSQL 

system also called “NOT only SQL” which may support 

SQL-like query operations.  

Paper ID: SUB153429 1328

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 4, April 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

NoSQL databases are highly used in big data problems and 

real time web applications where we want result in less time. 

Such types of databases designed with low cost commodity 

hardware and are easily scalable [7]. These databases use 

simple data models which lead to very less administration 

requirements and tuning requirements. Such databases use 

cheap commodity servers to manage large amounts of data 

and transaction data as compared to relational databases 

which uses expensive dedicated servers and storage systems. 

Hence, cost of NoSQL databases can be many times less 

than cost of RDBMS which allows you to store more 

amounts of data at much lower price.  

 

NoSQL key value stores and document databases allow the 

applications to store any structures it wants in NoSQL 

databases. Open source implementation of Bigtable based 

NoSQL databases such as Hbase typically allows new 

columns to be creates easily. So the result is that if suppose 

application changes and database schema changes can be 

managed easily. 

 

C. HBASE 

Hbase is open source implementation of Google’s Bigtable. 

Hbase was created in 2007 at Powerset and initially it was a 

contribution part of Hadoop [2]. Then at later it has become 

top level project under the Apache Software Foundation 

umbrella. The latest release of Hbase version is 1.0.0. 

 

Hbase is a distributed, persistent, strictly consistent and 

excellent read performance storage system. It efficiently uses 

disk space depending on the nature of data in column 

families. Hbase uses a single index rowkey, similar to 

primary key in RDBMS and It can offer the sever side hooks 

to implement the flexible secondary indexing. Hbase also 

provides filters for reducing data transferred over the 

network. There is no support for query language and it has 

limited support for transactions.  

 

Hbase transparently handles the shifted load and failures. 

Hbase is scalable and clusters can grow and shrunk 

automatically and no need of complicated rebalancing or re-

sharding procedure.  

 

3. Quad Tree Index Structure on Hbase 
 

The location data are inherently multidimensional consisting 

of spatial attributes (e.g. longitude and latitude). Different 

applications used such spatial data in various different ways. 

We develop a Quad tree index structure on top of Hbase 

which will provides real time query processing on given 

location.  

 

A. Quad Tree Index Structure layer 

We show how standard index structure like Quad tree [5] 

will be implemented on top of Hbase. The data storage layer, 

Hbase uniquely identifies the row by their rowkey. In the 

system the space is partitioned into different unique 

subspaces and each subspace stores the points equal to the 

physical bucket size.  

 

For splitting the space, we used trie based quad tree. The 

bucket capacity must be fixed in the subspace, if the bucket 

capacity exceeds the specified limit then the subspace split 

into equal size subspace. 

 
Figure 1: Quad Tree Index Structure 

 

Trie-based quad tree has the property of z-ordering which 

states that, when the split occurs in space then all values in 

subspaces is in continuous order [1]. When multidimensional 

space is divided by using quad tree approach then we get 

four equal size subspaces. The z-order of given subspaces is 

calculated by interleaving the bits of subspaces. 

 

Fig.1 shows, how space partition is done in trie based quad 

tree data structure. For example, before the space partition 

consists of z-value in z-order is 00,01,10,11. If we partition 

the space which consist of z-value 11, then after partition it 

will contain the z-value in z-order is 1100,1101,1110,1111. 

As the data grows and the capacity of the subspaces exceeds 

then subspace is divided into n-dimensional subspaces along 

all dimension resulting in 2n subspaces. Trie based quad tree 

splits the subspace into equal size and it is very efficient 

because it divides the space in regular shaped [1]. 

 

B. Hbase Data Storage Layer 

We use Hbase as a data storage layer consists of range 

partitioned key-value store. It is open source implementation 

of BigTabel. 

 

An Hbase table consists of number of regions, when data 

grows then Hbase automatically splits the data into different 

regions according to rowkeyandstores the data points of a 

particular mapping range [1]. The architecture of our system 

consists of two levels. The upper level is use for storing 

indexes and the lower level is responsible for storage of 

actual data points.  

 

An Hbase installation in a system consists of collection 

region servers. If a data in regions exceeds beyond the 

configurable set limit then the Hbase splits the regions into 

two regions automatically. This states that Hbase is scalable 

and can handle growing amounts of data dynamically [1]. 

 

Our experiment uses all data points in a single table. For 

storing z-values for indexing of quad tree data structure we 

used a separate table. 

 

The data points in a table are continuously stored in 

subspaces. When we have to search a data point then the z-

value is calculated and then the actual table value is being 

fetched by rowkey. While inserting a data point, the 

corresponding entry in index table is being modified and 

then the actual data point is inserted into a table. When the 

Paper ID: SUB153429 1329

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 4, April 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

space splits occurs then it updates the corresponding entry in 

the index table. 

 

4. Experimental Evaluation 
 

We implemented our work using Hbase 0.98.5. The 

machines run on 64 bit processor having 8GB RAM and 160 

GB Hard Disk on Ubuntu 14.04 LTS. We used Eclipse as 

IDE for performing comparison analysis of RDBMS and 

Hbase. We used LAMP for RDBMS data storage platform. 

The evaluation consists of two standard queries processing, 

that is, nearest neighbor query and range Query over same 

data sets. We applied the quad tree multidimensional 

indexing on Hbase and spatial multidimensional indexing on 

RDBMS data storage.  

 

We used data set with sufficiently large data points and 

organize these data points in space and check the 

performance of data organizations based on indexing 

technique applied on Hbase storage model and RDBMS 

storage model. The data points consist of mainly spatial data 

(i.e. latitude and longitude), userid, location, timestamp etc. 

 

A. Nearest Neighbor Query Evaluation 

Here we compare the Nearest neighbor query (KNN) 

performance using the same dataset on two data storage 

model, that is, RDBMS and Hbase. Fig. 2 shows the result of 

comparison analysis of nearest neighbor query between 

RDBMS and Hbase. The bar chart shows that Hbase requires 

less response time as compared to RDBMS. 

 
Figure 2: Response time of KNN query processing in 

RDBMS and Hbase 
 

B. Range Query Evaluation 

We compare the performance of Range Query on the same 

dataset using two data storage model, that is, RDBMS and 

Hbase. Fig. 3 shows the result of comparison analysis of 

range query. The Bar chart shows that Hbase requires less 

response time as compared to RDBMS. 

 
Figure 3: Response time of Range query processing in 

RDBMS and Hbase 

5. Conclusion 
 

We proposed Hbase as efficient and scalable data storage 

system which can supports efficient multidimensional 

nearest neighbor query and range query with response time 

less than the traditional relational data management system. 

We implemented our design using standard quad tree index 

layer and Hbase, open source key-value store. Our evaluation 

compares the multidimensional nearest neighbor query and 

range query in RDBMS and Hbase and shows that response 

time of Hbase is less than RDBMS. 

 

References 
 

[1] S. Nishimura, S. Das, D. Agrawal, and A. Abbadi, “Md-

hbase: A scalable multi-dimensional data infrastructure 

for location aware services,” in Mobile Data 

Management (MDM), 2011 12th IEEE International 

Conference on, vol. 1. IEEE, 2011. 

[2] HBaseThe Definitive Guide, 1
st
 ed., O’Reilly Media, 

Inc., 1005 Gravenstein Highway North, Sebastopol, CA 

95472. 

[3] A. S. Foundation, “Apache HBase Reference Guide,” 

April 2012. 

[Online].Available:http://hbase.apache.org/book/book.ht

ml 

[4] J. Ernst, “SQL Databases v. NoSQL Databases,” 

Communications of the ACM, vol. 53(4), 2010, pp. 10-

11 

[5] R. Finkel and J. Bentley, “Quad trees a data structure for 

retrieval on composite keys,” Actainformatica, vol. 4, 

no. 1, pp. 1–9, 1974. 

[6] Wikipedia, “Location-based service,” dec 

2014.[Online].Available:http://en.wikipedia.org/wiki/Lo

cation-based_service 

[7] R. Cattell, “Scalable sql and nosql data stores,” ACM 

SIG-MOD Record, vol. 39, no. 4, pp. 12–27, 2011. 

[8] "Foundations of Location Based Services", Stefan 

Steiniger, Moritz Neun and Alistair Edwardes, 

University of Zurich 

[9] Permanent Reference Document SE.23: Location Based 

Services“, GSM Association 

[10] Apache HBase. http://hbase.apache.org/ 

[11] DataStax. http://www.datastax.com/ 

[12] MongoDB. http://www.mongodb.org/ 

[13] N. Dimiduk, A. Khurana, and M. H. Ryan, HBase in 

action, Shelter Island, NY: Manning, 2012. 

[14] F. Chang, Dean, S. Ghemawat et aI., "Bigtable: A 

distributed storage system for structured data," Seventh 

Symposium on Operating System Design and 

Implementation, Seattle, WA: Usenix Association, 2006. 

[15] Dan Han, EleniStroulia,"HGrid: A Data Model for Large 

Geospatial Data Sets in Hbase," in Cloud Computing, 

2013 6
th

 IEEE International Conference on, IEEE, 2013. 

Paper ID: SUB153429 1330

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/



