
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Secure Load Rebalancing in Cloud

Environment

Mannava Praveen Kumar
1
, Srinivas LNB

2

1Cloud Computing, Department of Information Technology, SRM University, Kattankulathur, Chennai, India

2Guide, Department of Information Technology, SRM University, Kattankulathur, Chennai, India

Abstract: This paper examines the load rebalancing problem in cloud computing. The main objective of the paper is to Enhance

distributed load rebalancing algorithm to cope with the load imbalance factor, movement cost, and algorithmic overhead. The load

rebalance algorithm is compared against a centralized approach in a production system and the performance of the proposal

implemented in the Hadoop distributed file system for cloud computing applications. We investigate to implement security provided for

cloud computing and Evaluate the Quality of Service-QOS (Ex. Response Time) of whole system. In cloud computing one server

controls number of sub servers, files, it can add, delete, and append dynamically. Any file sharing (uploading or downloading) are stored

in sub servers and retrieved from sub servers. Before uploading and downloading that files are stored in encrypted format and retrieve in

a decrypted format. In our implementation the key is sent to the user’s email id, user uses that key to view and download the files from

sub server. For encryption and decryption schemes we are using RSA algorithm

Keywords: DFS, MapReduce, Load balancing, Distributed Hash Table, cloud

1. Introduction

In Cloud computing, the number of computers that are

connected using communication network. The notation of

cloud indicates that internet is mandatory to perform the

various cloud operations i.e. to create delete, append and

replace. It is used in IT-companies to share information and

resources with the all users. There are various characteristics

of cloud i.e. Scalable, on demand service, User centric,

Powerful, Versatile, Platform independent etc. In cloud three

technologies are included the MapReduce programming,

Virtualization and distributed file systems for the data

storage purpose. Distributed file system is classical model of

file system that is used in the form of chunks for cloud

computing. Cloud computing application is based on the

MapReduce programming used in distributed file system.

MapReduce is the master-slave architecture in Hadoop.

Master act like Namenode and Slave act like Datanode.

Master takes large problem, divides it into sub problem and

assigns it to worker node i.e. to multiple slaves to solve

problem individually. In distributed file system, a large file

is divided into number of chunks and allocates each chunk

to separate node to perform MapReduce function parallel

over each node. For example in word count application it

identifies the occurrences of each distinct word in large file.

In this application a large file is divided into fixed-size

chunks (parts) and assigns each chunk to different cloud

storage node. Then each storage node calculates the

occurrences of each distinct word by scanning and parsing

its own chunk. Then give its result to master to calculate the

final result. In distributed file system, the load of each node

is directly proportional to number of file chunks that node

consists. As the increase in storage and network, load

balancing is the main issue in the large scale distributed

systems. Load should be balance over multiple nodes to

improve system performance, resource utilization, response

time and stability. Load balancing is divided into two

categories: static and dynamic. In static load balancing

algorithm, it does not consider the previous behavior of a

node while distribute the load. But in case of dynamic load

balancing algorithm, it checks the previous behavior of node

while distribute the load. In cloud, if number of storage

nodes, number of files and assesses to that file increases then

the central node (master in MapReduce) becomes

bottleneck. The load rebalancing task is used to eliminate

the load on central node. In load balancing algorithm,

storage nodes are structured over network based on the

distributed hash table (DHT); each file chunk having rapid

key lookup in DHTs, in that unique identifier is assign to

each file chunk [1]. DHTs enable nodes to self-recognize

and repair while it constantly offers lookup functionality in

node. Here aim to reduce the movement cost which is

caused by load rebalancing of nodes to maximize the

network bandwidth. Each Chunk server first find whether it

is light node or heavy node without global knowledge of

node. The numbers of file chunks are migrated from heavy

node to light node to balance their load. This process repeats

until all heavy nodes becomes the light nodes. To overcome

this load balancing problem each node perform load

rebalancing algorithm independently without global

knowledge about load of all nodes. The main goal is to

allocate files to these nodes, for avoiding heavy nodes that

files are uniformly distributed to these nodes. Load

balancing provides maximization of network bandwidth,

reduction of network traffic and network inconsistencies.

We can add, delete and update nodes dynamically for

heterogeneity of the nodes. Heterogeneity of the nodes will

increase the scalability and system performance. In

Distributed File System the main functionalities of nodes is

to serve computing and storage functions.

This results in load imbalance in a distributed file system;

that is, the file chunks are not distributed as uniformly as

possible among the nodes. Emerging distributed file systems

in production systems strongly depend on a central node for

chunk reallocation. This dependence is clearly inadequate in

a large-scale, failure-prone environment because the central

load balancer is put under considerable workload that is

Paper ID: SUB153423 2057

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

linearly scaled with the system size, and may thus become

the performance bottleneck and the single point of failure. In

this paper, a fully distributed load rebalancing algorithm is

presented to cope with the load imbalance problem. Our

algorithm is compared against a centralized approach in a

production system and a competing distributed solution

presented in the literature.

2. Comparative Study

Literature survey is the most important step in software

development process. Before developing the tool it is

necessary to determine the time factor, economy n company

strength. Once these things r satisfied, ten next steps are to

determine which operating system and language can be used

for developing the tool. Once the programmers start building

the tool the programmers need lot of external support. This

support can be obtained from senior programmers, from

book or from websites. Before building the system the above

consideration are taken into account for developing the

proposed system.

MapReduce: Simplified Data Processing on Large Clusters

MapReduce is the programming model used in

implementation for processing and generating large scale

datasets. It is used at Google for many different purposes.

Here map and reduce functions are used. Map function

generate set of intermediate key pairs and reduce function

merges all intermediate key values associated with same

intermediate key. The map and reduce function allows to

perform parallelize operation easily and re-execute the

mechanism for fault tolerance. At the run-time, system takes

care of detail information of partitioning the input data,

schedule the program execution across number of available

machines,handling features and managing

intercommunication between machines.

In distributed file system nodes simultaneously perform

computing and storage operations. The large file in

partitioned into number of chunks and allocate it to distinct

nodes to perform MapReduce task parallel over nodes.

Typically, MapReduce task processes on many terabytes of

data on thousands of machines. This model is easy to use; it

hides the details of parallelization, optimization, fault-

tolerance and load balancing. MapReduce is used for

Google’s production Web search service, machine learning,

data mining, etc. Using this programming model, redundant

execution used to reduce the impact of slow machines,

handle machine failure as well as data loss.

Load Balancing in Dynamic Structured P2P Systems may

thus become the performance bottleneck and single point

The performance of the system is enhanced with high

resources thereby increasing the throughput by using these

resources effectively. It is degraded with an increasing

system diversity. Game-theoretic static load balancing for

distributed systems.

[1] Penmatsa and chronopoulos discussed on static load

balancing strategy based on game theory for distributed

systems. And this work provides us with a new review of

the load balance problem in the cloud environment. As an

implementation of the distributed system, the load balancing

in the cloud computing environment can be viewed as a

game. Load balancing in structured P2P systems.

[2] A.Rao, K.Lakshminarayanan, S.Surana, R.Karp and

I.Stoica based on the concept of virtual many-to-many

framework is to cope with the load imbalance in a DHT. In

the many-to-many framework light and heavy nodes register

their loads with some dedicated nodes namely the

directories. The directories compute matches between heavy

and light nodes and then respectively, request the heavy and

light nodes to transfer and to receive designated virtual

servers. Load Balancing in Dynamic Structured P2P

Systems

[3]. S.Surana, B.Godfrey, K. Lakshmi narayanan, R Karp

and I.Stoica discussed on the many-to-many framework

essentially reduces the load balancing problem to a

centralized algorithmic problem. As the entire system

heavily depends on the directory nodes, the directory nodes

may thus become the performance bottleneck and single

point of failure. Chord: A Scalable Peer-to-peer Lookup

Service for Internet Applications.

The chunkservers in our proposal are organized as a DHT

network; that is, each chunkserver implements a DHT

protocol such as Chord or Pastry . A file in the system is

partitioned into a number of fixed-size chunks, and “each”

chunk has a unique chunk handle (or chunk identifier)

named with a globally known hash function such as SHA1 .

The hash function returns a unique identifier for a given

file’s pathname string and a chunk index.

3. Proposed Architecture

We are interested in studying the load rebalancing problem

in distributed file systems specialized for large-scale,

dynamic and data-intensive cloud. (The terms “rebalance”

and “balance” are interchangeable in this paper.) Such a

large-scale cloud has hundreds or thousands of nodes (and

may reach tens of thousands in the future). Our objective is

to allocate the chunks of files as uniformly as possible

among the nodes such that no node manages an excessive

number of chunks. Additionally, we aim to reduce network

traffic (or movement cost) caused by rebalancing the loads

of nodes as much as possible to maximize the network

bandwidth available to normal applications. Moreover, as

failure is the norm, nodes are newly added to sustain the

overall system performance, resulting in the heterogeneity of

nodes. Exploiting capable nodes to improve the system

performance is, thus, demanded. Our proposal not only takes

advantage of physical network locality in the reallocation of

file chunks to reduce the movement cost but also exploits

capable nodes to improve the overall system performance.

3.1 Advantages of Proposed System

This eliminates the dependence on central nodes. Our

proposed algorithm operates in a distributed manner in

which nodes perform their load-balancing tasks

independently without synchronization or global knowledge

regarding the system. Algorithm reduces algorithmic

overhead introduced to the DHTs as much as possible.

Paper ID: SUB153423 2058

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3.1.1 Algorithm Used

Load Rebalancing Algorithm

3.1.2 Load Rebalancing Algorithm

In computing, loadrebalancing distributes workloads acro ss

multiple computing resources, such as computers, a

computer cluster, network links, central processing units or

disk drives. Load balancing aims to optimize resource use,

maximize throughput, minimize response time, and avoid

overload of any single resource. Using multiple components

with load balancing instead of a single component may

increase reliability through redundancy. Load balancing

usually involves

dedicated software or hardware, such as a multilayer switch

or a Domain Name System server process.

3.2 Modules

Module creation DHT

formulation Load balancing

algorithm Group Evaluation

3.2.1 Module Creation:

Our objective is to allocate the modules of files as uniformly

as possible among the nodes such that no node manages an

excessive number of modules. A file is partitioned into a

number of modules allocated in different nodes so that Map

Reduce Tasks can be performed in parallel over the nodes.

3.2.2 DHT Formulation:

The module servers in our proposal are organized as a DHT

network. Typical DHTs guarantee that if a node leaves, then

its locally hosted modules are reliably migrated to its

successor; if a node joins, then it allocates the modules

whose IDs immediately precede the joining node from its

successor to manage.

3.2.3 Load Rebalancing Algorithm

In our proposed algorithm, each module server node I first

estimate whether it is under loaded (light) or overloaded

(heavy) without global knowledge. A node is light if the

number of modules it hosts is smaller than the threshold.

First of all we will find the lightest node to take the set of

modules from heaviest node. So we can do the process

without failure.

3.2.4 Graph evaluation

The overall dynamic resource allocation in large cloud

environment is evaluated and displayed as pie graph. The

graph shows the overall usage of the virtual machines in the

cloud. The graph shows the maximum utility of the Virtual

machine under memory constraints. Equal usage of all

virtual machines in the cloud is shown in the graph.

4. Implementation

Implementation is the stage of the project when the

theoretical design is turned out into a working system. Thus

it can be considered to be the most critical stage in achieving

a successful new system and in giving the user, confidence

that the new system will work and be effective.

The implementation stage involves careful planning,

investigation of the existing system and it’s constraints on

implementation, designing of methods to achieve

changeover and evaluation of changeover methods.

1. Data Owner Registration

2. Data User Registration

3. TTP (Trusted Third Party) LOGIN

4. CSP(Cloud Service Provider) LOGIN

5. Download File

Data Owner Registration

In this module if a owner of data(File) have to store data on

a cloud server, he/she should register their details first.

These details are maintained in a Database.Then he has to

upload the file in a file database. The file which are stored in

a database are in an encrypted form. Authorized users can

only decode it.

Data User Registration

In this module if a user wants to access the data which is

stored in a cloud server, he/she should register their details

first. These details are maintained in a Database.

TTP LOGIN:

In this module TTP has monitors the data owners file by

verifying the data owner’s file and stored the file in a

database. Also ttp checks the CSP and find out whether the

csp is authorized one or not.

CSP LOGIN

In this module CSP has to login first. Then only he can store

the file in his cloud server.Ttp can only check the csp

whether the csp is authorized csp or not. If its fake, ttp won’t

allow the file to store in cloud server.

Based on this Paper

A file is partitioned into a number of chunks allocated in

distinct nodes so that MapReduce tasks can be performed in

parallel over the nodes. For example, consider a wordcount

application that counts the number of distinct words and the

frequency of each unique word in a large file. In such an

application, a cloud partitions the file into a large number of

disjointed and fixed-size pieces (or file chunks) and assigns

them to different cloud storage nodes (i.e.,

chunkservers).Also we have developed word count

application and word search application.

Download File

If the user is an authorized user,he/she can download the file

by using meta data of the file which have uploaded and

divided.

System Design

Implementation is the stage of the project when the

theoretical design is turned out into a working system. Thus

it can be considered to be the most critical stage in achieving

a successful new system and in giving the user, confidence

that the new system will work and be effective. The

implementation stage involves careful planning,

investigation of the existing system and it’s constraints on

implementation, designing of methods to achieve

changeover and evaluation of changeover methods.

Paper ID: SUB153423 2059

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Load Rebalance - System Architecture

Load Rebalancing Algorithm First evaluate whether the

loads are light (under loaded) or heavy (overloaded) in each

sub servers without global knowledge. All heavy loads are

changed in to light nodes. F are downloading or uploading

with the aid of the centralized system. Load equalization

technique used to distribute the F uniformly in to sub

servers. The advantage of the technique is reducing latency,

isolated overload, and great utilization of resources

provident outcome. Files F are needed to upload; these files

are stored in all nodes. Files F are needed to download; these

files are retrieved from all nodes. For this to achieve Utilize

Physical Network Locality, Picking lead of node

heterogeneity, handle replicas and improve overall system

performance. Security Cloud computing is an emerging

technology that is still unclear to many security problems.

Ensuring the security of stored data in cloud servers is one

of the most challenging issues in such environments. The

main aim of this project is to use the cryptography concepts

in cloud computing communications and to increase the

security of encrypted data in cloud servers with the least

consumption of time and cost at the both of encryption and

decryption Processes. To make sure the security of data, our

proposed a method of providing security by implementing

RSA algorithm, the encrypted data_s that will be stored in

the sub servers. The key send to user_s mail id, user can

access original data through this key. Otherwise user_s can

get only cipher text without key.

We use the RSA algorithm (William, 2005) as a basis to

provide data-centric security for shared files. RSA algorithm

involves three steps [17]. (i) First, in Key generation before

the data is encrypted, Key generation should be done. This

process is done between the Cloud service provider and the

user. (ii) Second, in Encryption is the process of converting

original plain text (data) into cipher text (data). (iii)Third,

Decryption is the process of converting the cipher text (data)

to the original plain text (data).

A. Key Generation Algorithm

1) Randomly and secretly choose two large primes: p, q and

compute n = p. q

Mechanism: AES_ENCRYPT & AES_DECRYPT Here we

are using this aes_encrypt & aes_decrypt for encryption and

decryption. The file we have uploaded which has to be in

encrypted form and decrypt it by using key, also we are

sending mail to the recipient using the following codes.

5. Conclusion

A novel load-balancing algorithm to deal with the load

rebalancing problem in large-scale, dynamic, and distributed

file systems in clouds has been presented in this paper. Our

proposal strives to balance the loads of nodes and reduce the

demanded movement cost as much as possible, while taking

advantage of physical network locality and node

heterogeneity. Particularly, our load-balancing algorithm

exhibits a fast convergence rate. The efficiency and

effectiveness of our design are further validated by

analytical models and a real implementation with a small-

scale cluster environment. Emerging distributed file systems

in production systems strongly depend on a central node for

chunk reallocation. This dependence is clearly inadequate in

a large-scale, failure-prone environment because the central

load balancer is put under considerable workload that is

linearly scaled with the system size, and may thus become

the performance bottleneck and the single point of failure.

Centralized approach in a production system and a

competing distributed method are compared with proposed

algorithm. Load imbalance factor, movement cost, and

algorithmic overhead are handled by developed algorithm

efficiently. To securing the data, implemented the RSA

algorithm. Examine the Performance measures of whole

system.

References

[1] S.Penmatsa and T.Chronopoulos, Game-theoretic static

load balancing for distributed systems, Journal of Parallel

and Distributed Computing, vol.71, no.4, pp.537-555,

Apr. 2011.

[2] A.Rao, K.Lakshmi narayanan, S.Surana, R.Karp and

I.Stoica, Load Balancing in Structured P2P Systems_,

Proc. Second Int„l Workshop Peer-to-Peer Systems

(IPTPS „02), pp. 68-79, Feb. 2003.

[3] S.Surana, B.Godfrey, K.Lakshminarayanan, R.Karp and

I.Stoica,―Load Balancing in Dynamic Structured P2P

Systems, Performance Evaluation,vol.63, no. 6, pp.

217-240, Mar. 2006.

[4] Ion Stoica, Robert Morris, David Karger, M. Frans

Kaashoek and Hari Balakrishnan. ―Chord: A Scalable

Peer-to-peer Lookup Service for Internet Applications._

in Pmc. ACM SIGCOMM. San Diego, 2001, pp. 149-

160.

[5] fig(1) from Enhanced Load Rebalancing algorithm for

Distributed File Systems In Clouds. (International

Journal of Engineering and Innovative

Technology)(IJEIT).

[6] Survey on Load Rebalancing for Distributed File System

in Cloud(International Journal of Innovative Research in

Advanced Engineering (IJIRAE) Volume 1 Issue 2

(April 2014)).

[7] Load rebalancing for Distributed file systems in clouds

(IEEE Transaction on parallel and distributed

systems.vol.24.no.5,year2013).

[8] A. Bharambe, M. Agrawal, and S. Seshan, “Mercury:

Supporting Scalable Multi-Attribute Range Queries,”

Proc. ACM SIGCOMM ’04, pp. 353-366, Aug. 2004

Paper ID: SUB153423 2060

