Combination of Plasma Ultra-Sensitive CRP and Homocysteine as Diagnostic and Predictive Protocol for Acute Myocardial Infarction

Kamal Eldin Ahmed Abdelsalam

Chemical Pathology, College of Applied Medical Sciences, Shaqra University, Saudi Arabia

Abstract: **Objective:** The aim of the present study was to provide us-CRP test together with homocysteine test as a protocol for emergency diagnosis for acute myocardial infarction (MI) comparing to cTnI and LDL-C. **Materials and Methods:** This was a cross-sectional study conducted in Sudan, between December 2012 and July 2014. The study included 122 patients (78 males and 44 females). All the patients were admitted in Intensive Cardiac-Care Unit (ICCU) ward, and informed consent was obtained with the blood samples immediately (within the first 3 hours after chest pain), regardless the type of that disease. Control group was consisted of 80 healthy volunteers. Using enzyme linked immunosorbent (ELISA) method we estimated serum homocysteine (Hcy), ultra-sensitivity C – reactive protein (us-CRP), and cardiac troponin I (cTnI); while low-density lipoprotein (LDL-C) is measured by Standard direct automated spectrophotometric method. During the next 24 hours, and as a result of the medical follow-up, the patients were divided into 2 groups, AMI group (68 patients) and non-AMI group (57 patients). **Results:** The levels of us-CRP in AMI group showed significant increasing (P<0.05) when compared to non-AMI group, as well as comparison with the control group. While Hcy and cTnI displayed a significant increase in AMI when compared to control but showed insignificant raise when compared to non-AMI. On the other hand, the level of LDL-C showed insignificant variations between the three groups. **Conclusion:** Measurement of CRP together with homocysteine is thus a clinically sensible way to urgent and emergent assess whether a particular patient has acute MI than non-acute MI.

Keywords: acute myocardial infarction, homocysteine, us-CRP, cTnI, LDL-C

1. Introduction

Despite recent advances in the management of high blood pressure, diabetes mellitus, hyperlipidemia, but still the death due to heart disease is the most common. Acute myocardial infarction (AMI) usually develops to sudden or gradual anterior chest problems. There is a substantial interest in the use of newer biomarkers to identify persons who are at risk for the development of cardiac disease. Measurements of several biomarkers simultaneously will enhance risk stratification in CAD [1].

Diagnosis of acute myocardial infarction is done by the patient's history of illness and physical examination, in addition to cardiac biomarkers (CK-MB, troponins, and myoglobin) and electrocardiogram (ECG) findings. Reliance upon clinical impression alone leads to diagnostic uncertainty because the sign and symptoms of heart failure are relatively nonspecific. Key symptoms such as shortness of breath are nonspecific in patients with comorbidities such as reactive airway disease. Likewise, routine laboratory tests, ECG, and radiographs cannot be relied upon to always guide an accurate and appropriate diagnosis. Despite these challenges, diagnostic capabilities in heart failure have improved in recent years with recognition of the role that many factors play in the disease [2]. Now, some newer tests are also being considered to be valuable in the diagnosis of the vascular events. Homocysteine (Hcy) and ultra-sensitivity C – reactive protein (us-CRP) are greater than the product of the individual effects of each risk factor considered alone. Ultra-sensitivity C-reactive protein (us-CRP) and homocysteine have been emerged for diagnosis of coronary artery disease (CAD) [3]. Only few cross-sectional and small sized cohort studies have been conducted to explore the association of us-CRP and homocysteine biomarkers in diagnosis of CAD in African population [4].

The levels of CRP and Hyc must be used with caution in certain populations. Inflammation and some types of lung disease have elevated CRP level without affecting on Hyc. While homocysteine is elevated in many other diseases those have no effect on CRP [5]. In 2014 Miao et al. [6] concluded that the homocysteine concentrations changed little regardless of the form of heart disease but did not change in minor inflammatory cases, whereas CRP concentration considerably increased in inflammations and in acute myocardial infarction (MI). In 2011 Bizhehet et al. [7] reported that serum homocysteine concentration was increased in patients with all types of CVD and in acute inflammations. On other hand, on 2013 Moket et al. [8] reported that the actual impact of us-CRP and homocysteine needs to be assessed by doing larger prospective studies. Levels of hs-CRP were affected by age, blood pressure and blood glucose while the plasma homocysteine may be an independent risk factor in ischaemic stroke patients. Several epidemiological studies strongly suggest that the CRP with high sensitivity (hs-CRP) can be an independent and valid indicator for heart attack, heart arrest [8]. But, little information available about the combined effect of hs-CRP and homocysteine biomarkers on the risk of Acute MI [4].

The aim of our study was to determine whether the introduction of combined hs-CRP together with homocysteine had an impact on patients presenting with suspected acute MI to the emergency department as a protocol for emergency diagnosis for acute MI comparing to cTnI and LDL-C.

2. Materials and Methods

This study was a cross-sectional study conducted in Khartoum State – Sudan, between December 2012 and July 2014. The study included 122 patients (78 males and 44
were used in groups and the average of their ages are shown in Table 1.

Automated spectrophotometric method as manufacturer.

Medical follow-up of patients and after determining the type of cardiac disease, the patients were divided into 2 groups, AMI group (68 patients; 40 males and 28 females) and non-AMI group (57 patients; 35 males and 22 females). The subjects were nonsmokers, received no drugs and had no metabolic disease and had no recent history of surgery or trauma. Furthermore, the patients with previous history of CVA, malignancy, infection, inflammatory disease, or diabetes mellitus were excluded from the study. To avoid other confounding factors, we excluded overweight patients and controls and/or with a history of folic acid or vitamin B complex supply, a history of folic acid or vitamin B complex deficiency, and renal insufficiency. Informed consent was obtained from all patients and controls, and then pre-prepared questionnaire was used to collect the data including their past medical history, smoking status, family and clinical histories, and the prescribed drugs. 10 ml venous blood samples were taken from in serum separator tube patients in the first 3 hours after chest pain, while blood samples were collected after an overnight (for 10 hours) fasting from the controls group. Serum was separated after vitamin B complex deficiency, and renal insufficiency. Informed consent was obtained from all patients and controls, and then pre-prepared questionnaire was used to collect the data including their past medical history, smoking status, family and clinical histories, and the prescribed drugs. 10 ml venous blood samples were taken from in serum separator tube patients in the first 3 hours after chest pain, while blood samples were collected after an overnight (for 10 hours) fasting from the controls group. Serum was separated after 20 minutes and analyzed immediately after separation. The biochemical procedures were done via enzyme linked immunosorbent (ELISA) method. Serum homocysteine was measured using a special kit and ELISA method using AXIS-SHIELD kit (England) [10]. To determine the serum levels of hs-CRP, commercial kits of using quantitative assessment kit from DRG HS ELISA method were used [11]. On the other hand, cardiac troponin I (cTnI) measured as described by Niebroj-Dobosz et al. [12], while low-density lipoprotein (LDL-C) is measured by Standard direct automated spectrophotometric method as manufacturer procedure. During the next 24 hours, and as a result of the medical follow-up of patients and after determining the type of cardiac disease, the patients were divided into 2 groups, AMI group (68 patients; 40 males and 28 females) and non-AMI group (57 patients; 35 males and 22 females).

The data obtained are expressed as mean values ± SD. Statistical analyses were performed using SPSS (Statistical Package for Social Sciences). t-test was used to test for differences in means of continuous variables between patients and controls.

3. Results

The us-CRP and homocysteine levels in control and AMI groups and the average of their ages are shown in Table 1. Levels of us-CRP were raised significantly in both groups of AMI and non-AMI when compared to control group (P<0.00); while the levels of homocysteine, when compared to control group, showed a significant increasing only in AMI group (P=0.00). The level of cTnI also displayed a significant increase only in AMI group when compared to control group. Devaraj et al. [13] concluded that acute coronary syndrome and chronic ischemia are both lead to increased serum Hcy concentration, which is significantly increased in all subjects admitted to ICCU with cardiac problems, but in much higher in patients with AMI comparing to the control group. This finding is consistent with previous studies which demonstrated that hs-CRP is an independent predictor of future risk for cardiovascular events among healthy persons, as well as among patients with acute coronary syndrome [14].

The present study revealed that levels of serum us-CRP and homocysteine (Hcy) were increased significantly (p-value<0.001) in all patients in ICU when compared to the control group. AMI patients when compared to control group showed significant increase in the levels of us-CRP and Hcy. These results confirmed that plasma Hcy level was significantly increased in subjects with AMI [15]. Although the non-AMI cases necessitated treatment inside the intensive care unit, but it caused insignificant increase in Hcy comparing to the control. The results of Hcy in this study increased significantly (P=0.001) in AMI patients when compared to non-AMI patients. These findings were in line with Bizhehet al [6] who concluded that the highest Hcy and CRP levels characterized the patients with myocardial infarction.

Also, our findings illustrated that us-CRP levels were significantly increased in all subjects admitted to ICCU with cardiac problems, but in much higher in patients with AMI comparing to the control group. Devaraj et al. [13] concluded that acute coronary syndrome and chronic ischemia are both lead to increased serum Hcy concentration, which is significantly increased in all subjects admitted to ICCU with cardiac problems, but in much higher in patients with AMI comparing to the control group. Devaraj et al. [13] concluded that acute coronary syndrome and chronic ischemia are both lead to increased serum Hcy concentration, which is significantly increased in all subjects admitted to ICCU with cardiac problems, but in much higher in patients with AMI comparing to the control group.
and findings of Kawamoto et al[12] suggested that mild hyperhomocysteinemia was associated with multi-vessel coronary artery diseases (CAD) and acute MI. There is growing dispute concerning the causal role of Hcy and more support for the idea that the elevated plasma Hcy concentration is an aftermath of CAD[13].

The results of the present study elucidated the insignificant increasing in us-CRP and Hcy levels in AMI male patients when compared to AMI female patients (P>0.05). There were some similarities between our results and the results of Sharma et al[14] who reported that hs-CRP were affected by age and gender while the plasma homocysteine may be an independent risk factor in ischaemic stroke patients. The level of cTnI was increased significantly (P<0.05) in AMI males when compared to AMI females. These results were agreed with Yu et al[15] who reported that elevation of cTnI in males more than females in healthy persons. On the other hand, LDL-C in AMI males showed insignificant decrease in AMI male patients when compared to AMI female patients (P>0.05). This result was in agreement with that of Swiger et al[16] who reported that the concentrations of LDL-C were similar in women and men.

5. Acknowledgement

I am very much grateful to the V R Center to provide automated analyzer and its reagents

References