Electrochromic Investigation of Manganese Oxide Thin Films by Spray Pyrolysis Technique

Bhargande S. K. 1, Patil P. S. 2

1 Department of Physics, Brahmddevdada Mane Institute of Technology, Solapur 413002, India
2 Department of Physics, Shivaji University, Kolhapur (Maharashtra), India

Abstract: Thin films of MnOx are well suited for Electrochromic Photo-Voltaic (ECPV) effect and superconducting phenomenon (such as solar cells) due to its electrical, optical and electrochromic properties. MnOx thin films were prepared on glass substrate using a simple and low-cost chemical spray pyrolysis technique at different substrate temperature. The MnOx films were characterized by X-ray diffraction (XRD), transmittance, ultraviolet-visible (UV-VIS) optical spectroscopy and colouration efficiency. The XRD pattern reveals that MnOx films possess cubic structure. Transmittance activity of the sample was carried out by optical absorption studies. The indirect band gap of the material increases with increase in temperature. The dynamic of ion exchange was studied with CV, CA and CC. The maximum colouration efficiency observed is 17 cm²/mC.

Keywords: Colouration efficiency, Electrochromism, Manganese oxide, Spray pyrolysis, XRD

1. Introduction

An electro active species often exhibits new optical absorption bands (i.e. shows a new colour) in a accompaniment with an electron-transfer or redox reaction in which it either gains or losses an electron. Such colouration was first termed as electrochromism. An electrochromic (EC) material is able to change its optical properties in a reversible and persistent way under the action of a voltage pulse. This change is due to the formation of colour centres (or defect complex) or to an electro-chemical reaction that produces a coloured compound. The species that becomes coloured during redox reaction is called electrochrome. After a pulse of current effecting electron transfer at the working electrode has evoked the colouration; the colour persists, thereby producing memory effect. Current in opposite direction reverses the electrochemical process and the display reverts to the colourless or bleached state.

Electrochromism (EC) is exhibited by a number of materials, both inorganic and organic liquid and solid substances. Apart from conductive electrode (metal or conducting glass), electrochromic species can be all liquid (e.g. the ferro-ferricyanide system cited), or all solid, as a film or it can undergo liquid to solid conversion following oxidation or reduction where the electrochromic film is solid. The ionic diffusion involved here, or the intrinsic rate of electron uptake or loss, will determine the rate of electrochromic operation. The most widely studied inorganic substance is solid tungsten trioxide WO₃, in which the introduction of small amount of W⁺ give MₓWO₃ (M is cation) again allows intense optical absorption, or with particular values of x in this case of reflection. The change in optical properties makes electrochromic materials of considerable interest for optical devices of several different types such as elements of information display, light shutters, smart windows. Electrochromic optical switching devices known as “smart windows” can be used for variety of applications. One of the most promising applications is for the regulation of incident solar energy and glare in building, vehicles, air-crafts, space-crafts and ships. “Smart windows” technology is a more attractive alternative for substantial energy saving and is in practical use to some extents in many developed countries.

Manganese oxide (MnOx) is a transition metal oxide. It is black in colour and is used as electrode materials [1, 2], oxidizing agent, electrochemical catalysts [3]. MnOx of different structures are deposited using several techniques such as sol-gel [4], thermal evaporation in vacuum [5], MOCVD [6]. Manganese oxide of different structure (MnO, Mn₂O₃, MnO₂ and Mn₃O₄) is usually prepared by varying calcinations condition of starting chemical precursor bulk or film. They can also be prepared each other by varying the temperature and atmosphere (vacuum or air, oxygen, hydrogen etc.) of the calcinations [6]. Electrochemistry of MnOx electrodes has been widely studied as originated from their application for active materials in primary batteries, typically preparation of MnO₂ electrode by galvanostatic electrolysis has been performed [7]. Furthermore, MnOx thin films have received much attention as electrochromic (EC) materials [8, 9]. Several preparation methods of EC MnOx thin films including galvanostatic electrolysis [10, 11], chemical vapor deposition [12], thermal decomposition [13] and electron beam evaporation [14] have been proposed. MnO₂ is prepared in the form of thin films on glass substrate by chemical spray pyrolysis technique and their structural, optical properties and electrochromic properties are discussed. (Fig.1.1)

2. Experimental Procedure

2.1 Film Formation

MnOx thin films were grown on glass substrate using a typical spray pyrolysis technique. The spraying solution was prepared by dissolving appropriate quantity of precursor powder (manganese acetate) in methanol at room temperature according to equation,
The structural elucidation of MnO

2.2 Configuration of Electrochromic Cell

3. Results and Discussion

3.1 Structural Analysis

The structural elucidation of MnO2 film was shown in Fig. 1.2. The structural identification of MnO2 thin films deposited at various substrate temperatures from manganese acetate was carried out with X-ray diffraction. (The diffraction pattern obtained for samples T1, T2, T3 are as shown in Fig. 1.2.) The observed XRD patterns were compared with the JCPDS data [15]. The observed d’ values agree well with the standard d’ values and it was observed that all samples exhibit peaks corresponding to (104), (001), (311), (400) planes. The comparison with JCPDS data confirms the formation of Mn(OH)2 and MnO. The standard and observed d’ values with corresponding (hkl) planes are listed in Table 1.

The samples T1 prepared at lower temperature 200°C consists of Mn(OH)2 phase indicating an incomplete thermal decomposition of manganese acetate. It was also observed that prominence of MnO2 phase was found to improve with increase in deposition temperature. The films prepared at 250°C consist of Mn(OH)2 & λ- MnO2 and the films prepared at 300°C consist of λ- MnO2 films.

3.2 Transmittance Analysis

The films were further analyzed by optical absorption studies as well as transmittance study. The variation of optical absorption density ‘α’ with the wavelength ‘λ’ for the films were carried in the wavelength range 400 to 800 nm with UV spectrometer. This optical data were further analyzed to calculate the band gap energy of MnO2 samples using the relation,

\[\alpha = \alpha_o (h \nu - E_g)^n \]

Where \(\alpha_o \) - constant, h - photon energy, \(E_g \) - band gap energy

n = 1/2 for direct allowed transition
n = 2 for indirect allowed transition

Fig. 1.3 shows the variation of \((\alpha h \nu)^2 \) Vs (hv) for all samples and fig. 1.4 shows the variation of \((\alpha h \nu)^{1/2} \) Vs (hv). The extrapolation of the straight line portions of the plots \((\alpha h \nu)^2 \) Vs (hv) to zero absorption coefficient gives the values of direct band gap energy and extrapolation of the plots \((\alpha h \nu)^{1/2} \) Vs (hv) to gives the values of indirect band gap energy. It is found that indirect band gap of the samples increases with increase in temperature. The direct band gap energy for the samples at 250°C is minimum as compared to other samples.

3.3 Electrochromical Analysis

3.3.1 Cyclic Voltammetry (CV)

The voltammograms recorded at various scan rates (10 to 100 mVS-1) for sample T1 and T2 are shown in Fig. 1.5 and 1.6 resp. All the values of \(i_{pa}, i_{pc}, E_{pa}, E_{pc} \) and \(E_{on} \) obtained from the recorded voltammograms are listed in Table 2. The sample T2 shows higher cathodic and anodic peak currents than the sample T1, which indicates that the number of H+ ions intercalated and de-intercalated in T2 is more than T1. Result shows that the area under the curve decreases as scan rate increases and the area under the

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

3.1 Structural Analysis

The manganese acetate was carried out with X-ray diffraction. (The diffraction pattern obtained for samples T1, T2, T3 are as shown in Fig. 1.2.) The observed XRD patterns were compared with the JCPDS data [15]. The observed d’ values agree well with the standard d’ values and it was observed that all samples exhibit peaks corresponding to (104), (001), (311), (400) planes. The comparison with JCPDS data confirms the formation of Mn(OH)2 and MnO. The standard and observed d’ values with corresponding (hkl) planes are listed in Table 1.

The samples T1 prepared at lower temperature 200°C consists of Mn(OH)2 phase indicating an incomplete thermal decomposition of manganese acetate. It was also observed that prominence of MnO2 phase was found to improve with increase in deposition temperature. The films prepared at 250°C consist of Mn(OH)2 & λ- MnO2 and the films prepared at 300°C consist of λ- MnO2 films.

2.2 Configuration of Electrochromic Cell

The conventional three electrode cell was used to carry out CV, CA and CE experiment. The configuration of cell was as follows,

FTO/MnO2/0.01M H2SO4/C; SCE

With MnO2 deposited on FTO as working electrode, 0.01M H2SO4 as an electrolyte, C: counter electrode (graphite), SCE is saturated calomel reference electrode to which all measured voltages were referred.

3. Results and Discussion

3.1 Structural Analysis

The structural elucidation of MnO2 film was shown in Fig. 1.2. The structural identification of MnO2 thin films deposited at various substrate temperatures from manganese acetate was carried out with X-ray diffraction. (The diffraction pattern obtained for samples T1, T2, T3 are as shown in Fig. 1.2.) The observed XRD patterns were compared with the JCPDS data [15]. The observed d’ values agree well with the standard d’ values and it was observed that all samples exhibit peaks corresponding to (104), (001), (311), (400) planes. The comparison with JCPDS data confirms the formation of Mn(OH)2 and MnO. The standard and observed d’ values with corresponding (hkl) planes are listed in Table 1.

The samples T1 prepared at lower temperature 200°C consists of Mn(OH)2 phase indicating an incomplete thermal decomposition of manganese acetate. It was also observed that prominence of MnO2 phase was found to improve with increase in deposition temperature. The films prepared at 250°C consist of Mn(OH)2 & λ- MnO2 and the films prepared at 300°C consist of λ- MnO2 films.

3.2 Transmittance Analysis

The films were further analyzed by optical absorption studies as well as transmittance study. The variation of optical absorption density ‘α’ with the wavelength ‘λ’ for the films were carried in the wavelength range 400 to 800 nm with UV spectrometer. This optical data were further analyzed to calculate the band gap energy of MnO2 samples using the relation,

\[\alpha = \alpha_o (h \nu - E_g)^n \]

Where \(\alpha_o \) - constant, h - photon energy, \(E_g \) - band gap energy

n = 1/2 for direct allowed transition
n = 2 for indirect allowed transition

Fig. 1.3 shows the variation of \((\alpha h \nu)^2 \) Vs (hv) for all samples and fig. 1.4 shows the variation of \((\alpha h \nu)^{1/2} \) Vs (hv). The extrapolation of the straight line portions of the plots \((\alpha h \nu)^2 \) Vs (hv) to zero absorption coefficient gives the values of direct band gap energy and extrapolation of the plots \((\alpha h \nu)^{1/2} \) Vs (hv) to gives the values of indirect band gap energy. It is found that indirect band gap of the samples increases with increase in temperature. The direct band gap energy for the samples at 250°C is minimum as compared to other samples.

3.3 Electrochromical Analysis

3.3.1 Cyclic Voltammetry (CV)

The voltammograms recorded at various scan rates (10 to 100 mVS-1) for sample T1 and T2 are shown in Fig. 1.5 and 1.6 resp. All the values of \(i_{pa}, i_{pc}, E_{pa}, E_{pc} \) and \(E_{on} \) obtained from the recorded voltammograms are listed in Table 2. The sample T2 shows higher cathodic and anodic peak currents than the sample T1, which indicates that the number of H+ ions intercalated and de-intercalated in T2 is more than T1. Result shows that the area under the curve decreases as scan rate increases and the area under the
3.3.2 Chronoamperometry (CA)

Fig.1.7 shows variations of current versus time transients for MnO$_2$ thin films in 0.01M H$_2$SO$_4$ electrolyte at voltages ± 0.4 V, ± 0.6 V, ± 0.8 V, ± 1 V. The colouration time and bleaching time estimated from fig. 1.7 are listed in Table 3. It has been seen that the colouration as well as bleaching time increases with potential step. The maximum colouration time and bleaching time are 12.52 Sec and 32.07 Sec. resp. The reversibility of the reaction is 0.528 shows that the reaction is quasi-reversible.

3.3.3 Optical Studies

For the coloured state, the transmittance at 34% and for bleached state is about 46%. The change in transmittance is caused by an increase in the concentration of conduction band electrons. The free conduction band electron increases the absorption known as Drude absorption, so that the film become coloured. For the bleached state, the electrons occupied the levels in conduction band giving rise to an apparent increase in the band gap.

3.3.4 Colouration Efficiency

It is seen that colouration efficiency increases in potential step. It is noted that amongst these potential steps, sample exhibits maximum colouration efficiency of about 17 cm2/C at potential step ± 0.76 V, which is the result of largest optical modulation at 630 nm wavelength for smaller charge intercalation. (Wavelength of 630 nm is the most sensitive to human eye, therefore CE is calculated at 630 nm). The reported CE value is about 7cm2/C, for MnO$_2$ films made by electrodeposition.

3.3.5 Diffusion Coefficient

Diffusion coefficient measures the depth of intercalation of ions. The diffusion coefficient is given by,

$$D^{1/2} = i_p/2.6886*10^8*n^{3/2}*conc.\cdot\nu^{1/2}\cdot A$$

Where i_p is cathodic peak current, ν is scan rate, A is area of film.

In case of MnO$_2$, the diffusion coefficient increases with increase in scan rate. It is observed that the diffusion coefficient is larger for T2 than T1 for various scan rates. The maximum value of diffusion coefficient for T1 and T2 are 4.925 x 10$^{-9}$ cm2/sec and 7.22 x 10$^{-9}$ cm2/sec resp. The value of “D” depends on charge passed and hence extent of electrode reaction. The maximum value of insertion coefficient (X) is 0.0059. The insertion coefficient is given by,

$$X = QM/FpAt$$

Where Q is charge intercalated, M is the molecular weight, F is Faraday’s constant, A is area, ρ is the density of bulk material and t is thickness.

The value of X decreases with increase in scan rate.

4. Conclusions

MnO$_2$ thin films were prepared using by spray pyrolysis technique. The structural analysis revealed the cubical nature of the film; it is also observed that the prominence of MnO$_2$ phase was found to improve with an increase in deposition temperature.

The indirect band gap energy of the material increases with increase in temperature. The dynamic of ion exchange was studied with CV, CA, and CC. The sample T2 exhibits maximum EC colouration efficiency and is 17 cm2/C. The maximum transmittance is observed for sample T2.

Acknowledgement

The authors would like express sincere thanks to all staff members of physics department, Shivaji University, Kolhapur, Brahmdvedada Mane Institute of Technology, Solapur and University for their cooperation. The authors also acknowledge the help received from the staff of University science and Instrumentation Centre (USIC) and Common Facility Centre (CFC), Shivaji University, Kolhapur.

References

Spray Pyrolysis Deposition (SPD) Method

A solution containing starting compounds is atomized not continuously but intermittently by a pneumatic spraying system, since the substrate temperature is ensured by spraying the solution with compressed air. It thus takes several seconds for the next spray until the temperature will recover. Droplets are transported onto a substrate at 25 mm × 25 mm × 1 mm in size that is heated up to the prescribed temperature.

Film Formation Process

1. Mist containing metal ions
2. Heated substrate
3. Metal clusters X_n in solution
4. X_n clusters
5. X_n film

Spray Pyrolysis Processes in Reaction Chamber

1. Evaporation of solvent
2. Vaporization of source compounds
3. Process from liquid
4. Process from solid state
5. Process from vapor phase
6. Higher substrate

Figure 1.1: Spray pyrolysis technique

Figure 1.2: The diffraction pattern obtained for samples T1, T2, and T3

Figure 1.3: Direct band gap energy
Figure 1.4: Indirect band gap energy

Figure 1.5: Cyclic Voltammogram of T1

Figure 1.6: Cyclic Voltammogram of T2

Figure 1.7: Chronoamperometry of T2
Table 1: X-ray diffraction data

<table>
<thead>
<tr>
<th>Substrate temperature (°C)</th>
<th>observed d’ values (Å)</th>
<th>standard d’ values (Å)</th>
<th>(hkl)</th>
<th>Phase</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 (T1)</td>
<td>1.1041</td>
<td>1.0945</td>
<td>(104)</td>
<td>Mn(OH)$_2$</td>
<td>Hexagonal</td>
</tr>
<tr>
<td>250 (T2)</td>
<td>4.7362</td>
<td>4.734</td>
<td>(001)</td>
<td>Mn(OH)$_2$</td>
<td>Hexagonal</td>
</tr>
<tr>
<td>300 (T3)</td>
<td>2.4169</td>
<td>2.42</td>
<td>(311)</td>
<td>λ-MnO$_2$</td>
<td>Cubic</td>
</tr>
</tbody>
</table>

Table 2: Various electrochemical parameters deducted from Cyclic Voltammetry:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Scan rate mVS$^{-1}$</th>
<th>E_{p_a} mV$^{-1}$</th>
<th>E_{p_c} mV$^{-1}$</th>
<th>i_{p_a} μA/cm2</th>
<th>i_{p_c} μA/cm2</th>
<th>ΔE_{p} mV</th>
<th>Area under the curve mC/cm2</th>
<th>Contrast ratio</th>
<th>Diffusion coefficient cm2/sec 10^9</th>
<th>Insertion coefficient X</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>10</td>
<td>560</td>
<td>360</td>
<td>8</td>
<td>60</td>
<td>200</td>
<td>8.946</td>
<td>1.35</td>
<td>0.62</td>
<td>0.0059</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>525</td>
<td>530</td>
<td>12</td>
<td>66</td>
<td>5</td>
<td>4.504</td>
<td>1.35</td>
<td>1.48</td>
<td>0.0037</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>560</td>
<td>510</td>
<td>21</td>
<td>70</td>
<td>50</td>
<td>1.986</td>
<td>1.35</td>
<td>3.50</td>
<td>0.0023</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>575</td>
<td>595</td>
<td>23</td>
<td>72</td>
<td>20</td>
<td>0.995</td>
<td>1.35</td>
<td>7.22</td>
<td>0.0012</td>
</tr>
<tr>
<td>T1</td>
<td>10</td>
<td>370</td>
<td>300</td>
<td>240</td>
<td>50</td>
<td>70</td>
<td>20.71</td>
<td>--</td>
<td>0.08</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>380</td>
<td>420</td>
<td>200</td>
<td>160</td>
<td>40</td>
<td>4.041</td>
<td>--</td>
<td>2.89</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>400</td>
<td>560</td>
<td>160</td>
<td>200</td>
<td>160</td>
<td>3.355</td>
<td>--</td>
<td>4.93</td>
<td>--</td>
</tr>
</tbody>
</table>

Table 3: Various electrochemical parameters deducted from Chronoamperometry:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Potential Step 'V'</th>
<th>T_a 'sec'</th>
<th>T_b 'sec'</th>
<th>Colouration Efficiency cm2/C</th>
<th>Reversibility Qd/Qi</th>
<th>Qi mC/cm2</th>
<th>ΔOD mC/cm2</th>
</tr>
</thead>
<tbody>
<tr>
<td>250°C(T2)</td>
<td>±1.0</td>
<td>12.52</td>
<td>32.07</td>
<td>17</td>
<td>0.528</td>
<td>2.12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>±0.8</td>
<td>11.89</td>
<td>30.36</td>
<td>12</td>
<td>0.455</td>
<td>1.32</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>±0.6</td>
<td>11.66</td>
<td>32.88</td>
<td>9</td>
<td>0.475</td>
<td>0.80</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>±0.4</td>
<td>10.69</td>
<td>31.85</td>
<td>6</td>
<td>0.307</td>
<td>0.65</td>
<td>12</td>
</tr>
</tbody>
</table>