A Review Paper on Frequency Compensation of Transconductance Operational Amplifier (OTA)

Raghavendra Gupta1, Prof. Sunny Jain2
Scholar in M.Tech in LNCT, RGPV University, Bhopal M.P. India1
Asst. Professor in Department of Electronics & Communication in LNCT, RGPV University Bhopal, M.P. India2
Email: theraghav.india@gmail.com1, sunnyjain2008@gmail.com2

Abstract: In this brief, types of frequency compensation for operational transconductance amplifier are explained in detail. Compensation which is used to enhance frequency stability of the OTA, and to make gain and phase linear for required frequency range. As we know capacitor inside the OTA causes output to lag behind by 90° with each pole they create, If the addition of these phase lags add-up to 360°, the output signal will be in phase with the input signal. Feeding output signal back in proportion to input when the gain of the amplifier is sufficient will cause the amplifier to oscillate. To avoid such undesirable condition frequency compensation is required in OTA, the frequency compensation is used to make a particular pole dominant on other poles to make the transfer function 2nd order.

KEY WORDS: CMOS technology, operational amplifier, operational trans-conductance amplifier (OTA), Gain Bandwidth Product (GBW), Phase margin, positive feedback, gain enhancement.

1. INTRODUCTION
In electronics industry operational amplifier are the basic building blocks to develop analog environment for analog circuits. Generally amplifiers use negative feedback for its frequency stability, to avoid unwanted creation of positive feedback which causes amplifier to oscillate. The negative feedback controls the overshoot ringing of amplifier and it's bandwidth. Gain bandwidth product is very crucial parameter which shows the stability of the amplifier over the desired frequency range. Frequency compensation is a technique which uses pole splitting method to make the transfer function of single order to 2nd order with a dominant pole. Wide band amplifiers are most widely used for pulse and video amplification in communication systems and video display units. Some of the present non-feedback bandwidth-enhancing techniques are: cascoding [11], Cc-cancellation [2], [3] and “parasitic capacitance compensation” [4] techniques. Cascode and Cc-cancellation techniques prevent bandwidth reduction caused by “Miller effect,” but as mentioned in later part better frequency responses are achievable in an amplifier. “Parasitic capacitance compensation” is a technique for cancelling undesired capacitors of an amplifier. However, frequency limitation of active compensating network does not permit an exact cancellation. Circuits described which are also mainly applicable to low-gain amplifiers. A new technique is introduced in this paper based on an effect similar to the one occurring in the resistive feedback amplifiers.

2. DOMINANT-POLE COMPENSATION
Dominant pole compensation is the most widely used method for frequency compensation. It is a form of lag compensation, in this compensation a low frequency pole will be made dominant by adjustment of low frequency pole in a manner that other higher poles are to be made very far from the dominant pole, so that the transfer function (gain vs frequency curve) crosses the 0db line in between the dominant pole and other poles. Generally the lowest frequency is set to be dominant, so that it dominates the effect of higher frequency poles which reduces phase margin. It will make the difference between "open loop output phase and closed loop phase response of feedback network, not to falls below -180° with maintaining gain constant.

General purpose operational trans conductance amplifier uses dominant pole compensation by adding capacitor in between the gain stages of OTA. Adding capacitor introduces pole which is adjusted at low frequency so that gain vs frequency curve cross 0db just after the low frequency which is considered as dominant, this result, phase margin of
45°approximately depending upon the location of other or next higher poles. This phase margin is sufficient to control the oscillation, in commonly used feedback system. The dominant pole compensation has other advantage such as, it controls the overshoot and ringing of the OTA when we apply to step input. It is the most demanding requirement in terms of stability of OTA.

This type of frequency compensation passes through two drawbacks:

2.1 At high frequency the bandwidth of the OTA reduces thereby reducing open loop gain, this will affect in amount of feedback which causes distortion at such high frequency.

2.2 Dominant pole compensation technique reduces the slew rate of the OTA. This is caused by current driving stage which charge and discharge the compensated capacitor, this limits the fast-changing output of the OTA.

Pole splitting technique is used in dominant pole compensation. This will move the lower frequency of uncompensated amplifier towards origin to make it dominant and other higher frequency poles were move to a higher frequency.

3. MILLER COMPENSATION TECHNIQUE:

Miller compensated two stage OTA which is compensated by $C_m$ capacitor to enhance the frequency response is shown in figure 1 and figure 2 shows its small signal model for frequency analysis.

we use
\[
\frac{V_1}{V_{in}} \times \frac{V_0}{V_i} = \frac{V_0}{V_i}
\]
\[
\frac{V_1}{1 + \frac{V_1}{R_1} + \frac{V_1 - V_0}{1/R_C} + g_m V_{in}} = 0
\]
\[
V_1 = \left( s C_1 + \frac{1}{R_1} + s C_c \right) + g_m V_{in} - V_0 s C_c = 0
\]
\[
V_1 = \frac{V_0 s C_c R_1 - g_m V_{in} R_1}{1 + s R_1 (c_1 + c_2)} \quad \text{......(1)}
\]
\[
\frac{V_0}{1 + \frac{V_0}{R_2} + \frac{V_0 - V_1}{1/R_C}} + g_m V_1 = 0
\]
\[
V_0 \left[ s (c_2 + c_c) + \frac{1}{R_2} \right] = V_1 \left[ s C_c - g_m \right] \quad \text{.................(2)}
\]

from equation (1) & (2)
\[
V_0 \left[ s (c_2 + c_c) + \frac{1}{R_2} \right] = \frac{(V_0 s C_c R_1 - g_m V_{in} R_1)(s C_c - g_m)}{1 + s R_1 (c_1 + c_2)}
\]

\[
T(s) = \frac{A_{DC}(1 - \frac{s C_c}{s P_2})}{(1 + \frac{s}{P_1})(1 + \frac{s}{P_2})} = \frac{A_{DC}(1 - \frac{s C_c}{s P_2})}{1 + s \left( \frac{1}{P_1} + \frac{1}{P_2} \right) + s^2 \left( \frac{1}{P_1} \frac{1}{P_2} \right)}
\]

\[
s \left( \frac{1}{P_1} + \frac{1}{P_2} \right) \approx \frac{s}{P_2} \quad \text{as } P_2 \text{ is large enough}
\]

\[
\frac{1}{P_1} = \text{coefficients of } "s^2" \quad \frac{1}{P_2} = \text{coefficients of } "s"^2
\]

\[
P_1 = \frac{1}{R_2 (c_2 + c_c) + R_1 (c_1 + c_c) + c_c \cdot g_m R_1 R_2}
\]

\[
P_2 \approx \frac{1}{c_c \cdot g_m R_1 R_2}
\]
$P_1P_2 = \frac{1}{R_1R_2(c_1c_2 + c_1c_c + c_2c_c)}$

$P_2 = \frac{c_c g_m R_1R_2}{R_1R_2(c_1c_2 + c_1c_c + c_2c_c)} \approx P_2 = \frac{c_c g_m R_2}{c_c c_2} \approx g_m R_2$

and zero location $Z=\frac{g_m}{(c_2)}$

$\Delta & \text{Dec gain } A_{DC} = g_m g_m R_1 R_2$

Figure 3 shows the frequency response of compensated and uncompensated of OTA.

4. MILLER COMPENSATION WITH NESTED RESISTANCE:

Miller compensated nested resistance OTA is shown in figure 4 and its small signal model is shown in figure 5.

$C_{01} & r_{01}$ is the capacitance and resistance of first stage of OTA and $g_{m1}$ is the transconductance of first stage. $C_{02} & r_{02}$ is the capacitance and resistance of second stage of OTA with $g_{m1}$ is its transconductance. $C_L + C_2 \approx C_L$ as $C_2$ is very large.

The approximate expression for pole and zero are shown below from equation [2]. Due to nested miller resistance the transfer function is of third order,

$Z_1 \approx \frac{1}{(g_m R_2) C_m}$

$P_1 \approx -\frac{g_m r_{02} r_{01}}{C_m}$

$P_2 \approx -g_m R_2 \frac{C_L}{C_m} \approx \frac{C_L}{C_m} R_2$

The first pole $P_1$ is at low frequency which set the GBW of the OTA and the zero $Z_1$ cancel out $P_2$ with small and fixed load $C_L$ and $P_2 & P_3$ are very far away from $P_1$, so $P_1$ will be the dominant pole to stabilize the frequency. There is limitation on achievable phase margin since increasing $R_m$ not only tunes $Z_1$ to cancel out $P_2$ but it also reduces the third pole when $C_L$ is not fixed, or very large then the phase margin we get is not up to the required level this will create worst condition, as to achieve the required phase margin we have to increase the compensation capacitor, [12]. Use of large capacitive load unfortunately reduces the GBW and other drawback of such compensation is the process variation.

5. ENHANCEMENT PHASE COMPENSATION

It is clear that Miller compensation improves the phase margin by reducing gain bandwidth, try to increase the gain reduces the phase margin and make the pole complex [3],[4]. A positive feedback at the output gain stage increases the gain & bandwidth, based on this approach enhanced phase compensation work as shown in figure 6.
Bias
VDD
Vin-
Vin+
R1
R2
C1
C1
I2
I1
I3
Vout
Bias2
Vcmc
MB1
MB2
M1
Mx2
M7
M6
M5
M4
M3
M2
Mx5
Mx3
Mx4
Mx1
C2
C2
R2
R1
Vcm
Vcmc

Where two zero are introduced by positive feedback using register and capacitor, this will increase a pole also, to make the transfer function of fourth order, but due to Miller dominant pole condition two zero cancel out two poles to make it second order transfer function. Small signal model is shown in figure 7.

![Small signal model of Phase enhanced Compensated two-stage OTA](image)

The positive feedback RC cross-linked couple is made to increase the gain of the OTA and to stabilize it the transfer function. Transfer function is given by the following equations given below [1], and pole and zero approximated from the transfer function, as it is seen that the DC gain of the OTA is unchanged as RC link present an open circuit. Using KCL and KVL.

\[
V_{out} = g_{m1}g_{m2}r_01r_02 \times
\]

\[
\frac{(g_{m1}(C_1C_2r_1 - C_1C_2r_2) + R_1R_2C_1C_2)S^2 + (g_{m1}(C_2 - C_1) + C_1R_1 + C_2R_2)S + 1}{(C_0C_1C_2C_3r_01r_02r_03r_04S^4 + D_4S^3 + D_3S^2 + D_2S + 1)}
\]

\[
D_1 = C_0C_1C_2r_1r_02R_1 + C_0C_1C_2r_01r_02R_2 + C_0C_1C_2r_01r_02R_1 + C_0C_1C_2r_01r_02R_2 + C_0C_1C_2r_01r_02R_1 + C_0C_1C_2r_01r_02R_2
\]

\[
D_2 = C_0C_1C_2r_01r_02 + C_0C_1C_2r_01r_02
\]

\[
D_3 = C_0C_1r_01 + C_0C_1r_02 + C_0C_1r_01 + C_0C_1r_02 + C_0C_1r_01 + C_0C_1r_02 + C_0C_1r_01 + C_0C_1r_02
\]

\[
Z_1 \approx -\frac{1}{C(R_1 + R_2)}
\]

\[
Z_2 \approx -\frac{R_1 + R_2}{C(R_1R_2)}
\]

\[
p_1 \approx -\frac{1}{(C_L + 2C)r_02 + 2Cr_01}
\]

\[
p_2 \approx -\frac{(C_L + 2C)r_02 + 2Cr_01}{2C_tr_02r_01 + 4r_02r_01C^2}
\]

\[
p_3 \approx -\frac{2C_L + 4C}{CC_L(R_1 + R_2)} \quad & \quad P_4 \approx -\frac{R_1 + R_2}{C_0(R_1R_2)}
\]

\[
R_1 + R_2 \approx \frac{2C_tr_02r_01 + 4r_02r_01}{C_Lr_02 + 2Cr_01 + r_01}
\]

\[
\alpha(1 + \alpha)^2 \approx \frac{C_L}{2C_L + 4C}
\]

\[
BW_{RATIO} \approx \frac{(C_L + C_M)r_02 + g_{m2}r_02r_01C_M}{(C_L + 2C)r_02 + 2Cr_01 + C(R_1 + R_2)}
\]

\[
GBP_{RATIO} \approx \frac{(R_1 + R_2)C_L}{C_0R_1R_2g_{m2}}
\]

Figure 8 shows frequency response for the Miller compensation and the Phase enhanced compensation.
6. CONCLUSION

Three types of compensation technique is discussed in this paper and it shows that the phase enhance compensation is better than miller compensated technique in respect to phase enhance. The compensation technique provides improved bandwidth and gain bandwidth in caparison to uncompensated OTA.

REFERENCES


Author’s Profile

Raghavendra Gupta has received his Bachelor of Engineering degree in Electronics & communication engineering from Oriental College of Technology, Bhopal in the year 2010. At present he is pursuing M.Tech with the specialization of VLSI Design in LNCT, Bhopal. His area of interest Amplifier design, VLSI designing field & Programming Languages.

Prof. Sunny Jain has received his Bachelor of Engineering in Electronics & Instrumentation Engineering from JNCT, Bhopal in the year 2009 & has received his M.Tech from OIST, Bhopal with the specialization of Digital Communication. At present he is working as an Ass. Professor at LNCT, Bhopal. His areas of interests are Power electronics, Digital Communication Field.