
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Integrity Attestation and Auto-correction of

Services for SaaS Clouds

Amulya Rachna
1
, John Prakash Veigas

2

1Department of Computer Science and Engineering Guide

2Assistant Professor (M. Tech CSE) Dept CSE,P A College,

Abstract: SaaS systems helps the Application Service Provider’s (ASP’s) to convey their service to the users by making use of cloud

computing infrastructure. But because of the partake nature of SaaS clouds, they are often exposed and provide liable chance or the

attackers to easily accomplish their strategic attacks. In this paper, we present integrity test which is a novel service integrity attestation

for SaaS clouds. Integrity test can detect the fake service providers using an integrated graph attestation analysis method which is better

than existing methods. And in addition to that integrity test obsolete the auto-correction of the fake services, that is; it automatically

rectifies the corrupted result invoked by the fake service providers and replace it with the justified results provided by genuine service

providers. Integrity test can attain higher precision in pinpointing fake attackers than existing techniques.

Keywords: Cloud computing, SaaS, Service, Integrity attestation, Service Providers

1. Introduction

Cloud computing has become known as a capable hosting

platform that enables multiple cloud users called multi-

tenants to share a common physical computing

infrastructure. With the concepts of Software as a Service

(SaaS) [1] and Service Oriented Architecture (SOA) [2], the

Internet has evolved into an important service delivery

infrastructure instead of only providing host connectivity.

Software as a service clouds and Google App Engine [3]

build upon the concepts of Software-as-a-Service and

Service Oriented Architecture which enable application

service providers (ASPs) to deliver their applications via the

massive cloud computing infrastructure. However, cloud

computing infrastructures are often shared by ASPs from

different security domains, which make them vulnerable to

malicious attacks [4], [5] as shown in Fig.1. The problem is

attackers can pretend to be legitimate service providers to

provide fake service components, and the service

components provided by benign service providers may

include security holes that can be exploited by attackers.

Our work focuses on dataflow processing systems [6], [7],

[8] that provide high-performance continuous processing

over massive data streams. Previous work on distributed

dataflow processing mainly focuses on resource and

performance management issues. It usually assumes that all

data processing components are trustworthy.

In the previous research papers confidentiality and privacy

protection problems [9], [10], [11] are studied extensively

but the service integrity attestation problem was not properly

addressed. In software as a service cloud one of the most

important problems that need to be addressed is this service

integrity, no matter whether the data processing in cloud is

public or private data. Although traditional Byzantine Fault

Tolerance (BFT) techniques [12], [13] can detect malicious

behaviour using replicated services, those techniques often

incur high overhead and impose certain agreement protocol.

Figure 1: Service integrity attacks in clouds

In this paper, we present integrity test a newly integrated

service integrity attestation framework for multitenant cloud

systems. Integrity test provides a practical service integrity

attestation scheme that does not assume trusted entities on

third-party service provisioning sites or require application

modifications.Integrity test builds upon our previous work

RunTest [14] and AdapTest [15] but can provide stronger

malicious attacker pinpointing power than However, in

large-scale multitenant cloud systems, multiple malicious

attackers may launch colluding attacks on certain targeted

service functions to invalidate the assumption. To address

the challenge, Integrity test takes a holistic approach by

systematically examining both consistency and

inconsistency relationships among different service

providers within the entire cloud system. Moreover,

Integrity test provides resultauto-correction that can

automatically replace corrupted data processing results

produced by malicious attackers with good results produced

by benign service providers.

The rest of this paper is organized as follows. Section 2

presents the literature survey. Section 3 provides the

architecture in detail. Section 4 presents the methodology.

Finally, the paper concludes in section 5.

Paper ID: SUB153386 1678

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2. Literature Survey

Techniques Merits Demerits

BIND

system

framework

It use the fine grain attestation to

verify the integrity ofservice,

where it checks the attestation for

particular or necessary corrupted

node only.

It needs a third

party auditor to

verify the

service.

TEAS

system

Framework

Demerit of both genuinity and

SWATT can be overcome.

It automatically generate the agent

program

This system also

needs a secure

kernel hardware

or software for

verification.

RunTest

system

framework

It generate integrity attestation

graph to verify service provider.

It provides non-repudiation results.

The

performance is

low.

AdapTest

system

framework

It generates the weighted

attestation graph to verify the

services. It can reduce the

attestation overhead upto 60% and

detection delay upto 40%.

It does not

provide 100%

detection of

malicious node.

Integrity

test system

framework

It also generates the integrity

weighted graph to detect the

malicious.

3. Architecture

In this proposed system we are making some assumptions.

First of all we are assuming that the total number malicious

service components are less than that of the total number of

benign service providers in the entire cloud. This

assumptions is very important because without this

assumption, it would be difficult for any attack detecting

scheme to work successfully. The second assumption is the

data processing services are important deterministic. That is,

the same inputs that are giving by a benign service

component will always produce the same output. Fig.2.

shows the overall architecture of the proposed system. In

this the user give request to cloud the service will be

deployed in the cloud the cloud will forward the user request

to the SaaS and the response will be send to the cloud by the

SaaS. And then the Integrity test process will be done. After

that the result auto correction will be done. After that the

result will be send to the user by the cloud.

Figure 2: Overall architecture of Integrity test

4. Methodology

Pinpointing malicious service provider

Initially, all nodes are treated as benign nodes and stay in a

single clique. As a malicious node keeps misbehaving, it

will produce inconsistent results with that of benign nodes

sooner or later through attestation, and thus gets excluded

from the clique it stayed before. The malicious node either

remains in a downsized clique or becomes an isolated node.

When the malicious node is pushed away from any of the

cliques with size larger than ⌊k/2⌋, it will be pinpointed as

malicious. Ultimately, there will be only one clique with size

larger than ⌊k/2⌋in the per-function integrity attestation

graph, which is formed by all benign nodes. This clique is

the maximum clique in the attestation graph. All other

cliques, if there is any, should have size less than ⌈k/2⌉.
Thus, pinpointing malicious nodes becomes the problem of

finding consistency cliques in the attestation graph. We

adapt the well-known Bron-Kerbosch (BK) clique finding

algorithm as shown in fig.3 for finding consistency cliques

in the attestation graph. We maintain three disjoint sets of

nodes R, P, and X: The set R stands for the currently

growing clique and is initialized to be ∅; The set P stands for

prospective nodes which are connected to all nodes in R and

using which R can be expanded, and P is initializedto

contain all nodes; The set X contains nodes already

processed, is initialized to be ∅. The algorithm runs as

traversing the recursion tree by moving nodes from P to R

and updating the R, P, X sets recursively. A maximal clique

is reported when both P and X are empty. The heuristic of

the pivot selection is based on the identification and

elimination of equal sub-trees appearing in different

branches of the recursion tree which lead to the formation of

non-maximal cliques.

AdaptiveBK(G)

1. Initialization 1: Mark any two nodes with w <1 edge as

unconnected, and with w = 1 edge as connected;

2. Initialization 2: Eliminate nodes that do not have any

edge of w = 1

3. FindConsistencyClique(∅, V (G), ∅), where V (G) is the

node set of G
FindConsistencyClique(R, P,X)

1. if (P == ∅and X == ∅and size of R >1)

2. Report R as a maximal clique

3. else

4. Let up be the pivot node

5. Assume P = u1, u2, ..., uk
6. for i =1 to k do

7. if ui is not a neighbor of up

8. P = P −ui

9. Rnew = R ∪ui

10. Pnew = P ∩N[ui], where N[ui] is neighbor

set of ui

11. Xnew = X ∩N[ui]

12. FindConsistencyClique(Rnew, Pnew,Xnew)

13. X = X ∪ui

Figure 3: Consistency clique discovery algorithm

Identifying attacking patterns:

We characterize all possible attack scenarios using different

combinations of parameters (bi, ci) and classify those attacks

into five attack patterns.

 Non-Collusion Always Misbehave (NCAM).Malicious

components always act independently and always give

incorrect results. It corresponds to bi = 1 and ci = 0.

Paper ID: SUB153386 1679

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Non-Collusion Probabilistically Misbehave

(NCPM).Malicious components always act independently

and give incorrect results probabilistically with probability

less than 1.

 It corresponds to 0 < bi < 1 and ci = 0.

 Full Time Full Collusion (FTFC). Malicious

components always collude and always give the same

incorrect results, corresponding to bi = 1, and ci = 1.

 Partial Time Full Collusion (PTFC).Malicious

components always collude and give the same incorrect

results on selected tuples, corresponding to 0 < bi < 1 and

ci = 1.

 Partial Time Partial Collusion (PTPC).Malicious

components sometimes collude and sometimes act

independently. It corresponds to 0 < bi < 1 and 0 < ci < 1.

IdentifyMaliciousNodes(G)

1. find all maximal cliques CLi (1 ≤ i < k) in G using

adapted

Bron-Kerbosch algorithm with pivot selection

2. in CLi, find those maximal cliques with size larger than

⌊k/2⌋,
CLb (b ≤ i), where k is the total number of nodes in G

3. check all nodes Nodej in G against nodes in all CLb

4. if (Nodej is not in any of CLb)

5. Nodej is malicious

6. if (only one maximal clique in CLb, i.e.,the maximum

clique)

7. if (numCliques == 1)

8. nodes in the clique is identified as Ni

9. if (weights of edges from nodes in Ni to rest of nodes

not

in Ni are all 0s)

10. attack model NCAM

11. else

12. attack model NCPM or PTPC

13. if (numCliques ≥ 2)

14. nodes in the maximum clique are Ni, in the rest cliques

are N1i, N2i, ...

15. check each clique other than the maximum clique

16. if (weights from Ni to any of N1i, N2i, ... are all 0s)

17. attack model FTFC

18. else if (all links between Ni and Nji have same weight)

19. attack model PTFC

Figure 4: Integrity attack detection algorithm

Fig.4. shows the pseudo code of our algorithm to identify

attack patterns and malicious service nodes.

In this section we present the main modules in the proposed

system. Mainly it consists of three modules that are

described below

4.1 Baseline Attestation Scheme

Consider the Fig.5 it shows the consistency check method.

In that p1, p2 and p3 are the service providers. All of them

offer the same function f. The portal sends the original data

d1 to the service providers p1 and gets the processing result

f(d1). Then the portal sends the duplicate of d1 to p3 and

gets the result f(d1’). And if both of them are same means it

is consistent and if not means they are inconsistent, that is if

two service providers disagree with each other, when

processing the same input then any one of them will be

malicious. Thus the malicious attackers cannot escape from

detecting when they are providing bad results with good

results.

Figure 5: Consistency check

4.2 Integrated Attestation Scheme

Here we present an integrated attestation graph analysis

algorithm.

Step 1: Consistency analysis: In the first step it will examine

the per-function consistency graph and will pinpoint

suspicious service providers. The consistency links in the

consistency graph will provide a set of service providers. It

will keep consistent with each other on a specific service

function. The benign service providers will always keep

consistent with each other and will form a clique in terms of

consistency links. The colluding attackers can try to escape

from being detected. Then next we must examine the per-

function in consistency graph too.

Step 2: Inconsistency analysis: This inconsistency graph

will contain only the inconsistency links, this may exist in

different possible combinations of the benign node and the

malicious node set. First we assume that the total number of

malicious service providers in the cloud system is not more

than the benign service providers, and then we can pinpoint

a set of malicious service providers. If two service providers

are connected by an inconsistency link, we can say that any

one of them is malicious.

4.3 Result Auto Correction for Attacks

Integrity test can not only pinpoint malicious service

providers but also it will autocorrect the corrupted data

processing results with good results to improve the result

quality of the cloud data processing service. Without our

attestation scheme, once if an original data input is changed

by any malicious attacker, then the processing result of that

input will be corrupted and which will result in degraded

result quality.

As an illustration for the integrity test, consider the

information of some patients from a hospital. The details of

patients include their SSN number, name, disease, date of

birth, gender, zip code, salary, and DNA. The main objective

of integrity test is to maintain the integrity between services

being provided and pinpoint any service which is attacked.

We consider one original copy of information and three

attested copies of same information and also a test data

Paper ID: SUB153386 1680

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

which has disease and SSN to be tested. When all the four

set has consistency relationship between them then it means

that they are genuine set of providers so it just passes on the

service to the user. Now for illustrating the meaning of

integrity test, we consider the third set of attested copy as

attacked which doesn’t give proper result as other three

services. We perform two kinds of tests as functional and

combinational test where functional test is for consistency

check and combinational test is for inconsistency check. In

the functional test, it just forms cliques for genuine and

malicious services and in the combinational test it makes the

different combination of services and again forms cliques for

genuine and malicious services. When the service is

attacked, it starts misbehaving and gives improper result.

The set which gives exact results forms a clique of being

consistent. And the service which is attacked gives corrupted

result and so it forms other clique by the help of the two

algorithms shown in the above figures. Next, this service

which gave the corrupted result is autocorrected by taking

help of the set of genuine services.

5. Conclusion

In this paper we introduced a novel integrated service

integrity attestation graph analysis scheme for multitenant

software-as-a-service cloud system. Integrity test uses a

reply based consistency check to verify the service

providers. Integrity test will analyses both the consistency

and inconsistency graphs to find the malicious attackers

efficiently than any other existing techniques. And also it

will provide a result auto correction to improve the result

quality.

References

[1] Software as a Service,

http://en.wikipedia.org/wiki/Software as a Service,

2013.
[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web

Services Concepts, Architectures and Applications

(Data-Centric Systems and Applications). Addison

Wesley Professional, 2002.

[3] Google App Engine, http://code.google.com/appengine/,

2013.

[4] S. Berger et al., “TVDc: Managing Security in the

Trusted Virtual Datacenter,” ACM SIGOPS Operating

Systems Rev., vol. 42, no. 1, pp. 40-47, 2008.

[5] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,

“Hey, You Get Off My Cloud! Exploring Information

Leakage in Third-Party Compute Clouds,” Proc. 16th

ACM Conf. Computer and Communications Security

(CCS), 2009.

[6] D. J. Abadi and et al. The Design of the Borealis Stream

Processing Engine. Proc. of CIDR, 2005.

[7] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo.

SPADE: the system s declarative stream processing

engine. Proc. of SIGMOD, April 2008.

[8] The STREAM Group. STREAM: The Stanford Stream

Data Manager. IEEE Data Engineering Bulletin,

26(1):19-26, March 2003.

[9] W. Xu, V.N. Venkatakrishnan, R. Sekar, and I.V.

Ramakrishnan, “A Framework for Building Privacy-

Conscious Composite Web Services,” Proc. IEEE Int’l

Conf. Web Services, pp. 655-662, Sept. 2006.

[10] P.C.K. Hung, E. Ferrari, and B. Carminati, “Towards

Standardized Web Services Privacy Technologies,”

IEEE Int’l Conf. Web Services, pp. 174-183, June 2004.

[11] L. Alchaal, V. Roca, and M. Habert, “Managing and

Securing Web Services with VPNs,” Proc. IEEE Int’l

Conf. Web Services, pp. 236- 243, June 2004.

[12] L. Lamport, R. Shostak, and M. Pease, “The Byzantine

Generals Problem,” ACM Trans. Programming

Languages and Systems, vol. 4, no. 3, pp. 382-401,

1982.

[13] T. Ho et al., “Byzantine Modification Detection in

Multicast Networks Using Randomized Network

Coding,” Proc. IEEE Int’l Symp. Information Theory

(ISIT), 2004.

[14] J. Du, W. Wei, X. Gu, and T. Yu, “Runtest: Assuring

Integrity of Dataflow Processing in Cloud Computing

Infrastructures,” Proc. ACM Symp. Information,

Computer and Comm. Security (ASIACCS), 2010.

[15] J. Du, N. Shah, and X. Gu, “Adaptive Data-Driven

Service Integrity Attestation for Multi-Tenant Cloud

Systems,” Proc. Int’l Workshop Quality of Service

(IWQoS), 2011.

Paper ID: SUB153386 1681

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

