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Abstract: This paper presents the study of magnetohydrodynamic flow version of the Rayleigh problem with Hall effect and Rotation 

in the presence of an inclined magnetic field and porous plate. Exact solution of the governing equation is obtained by Laplace 

transform technique for the MHD flow of incompressible, electrically conducting, viscous fluid past a uniformly accelerated and 

insulated infinite plate. The effects of the Hall parameter ,N  Hartmann number M , Angle of inclination  , Porosity parameter 𝑲𝒑 

and the Rotation parameter 
2K  on the velocity components u  and v are shown graphically. It is concluded that the axial and 

transverse velocity components 𝒖 and 𝒗 increases with the increase in Hall Parameter, Hartmann number, Ekmann number, y and 𝒕 

with respect to the increase of Porosity parameter. 
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1. Introduction 
  
Many engineering problems are susceptible to MHD 

analysis. The study of MHD flow problems has achieved 

remarkable interest due to its application in MHD 

generators, MHD pumps and MHD flow meters etc. The 

study of effects of magnetic field on free convection flow is 

important in liquid metals, electrolytes and ionized gases 

.Geophysics encounters MHD phenomena in interaction on 

conducting fluids and magnetic fields. The rotating flow of 

an electrically conducting fluid in presence of magnetic field 

has got its importance in Geophysical problems. The study 

of rotating flow problems is also important in the solar 

physics dealing with the sunspot development, the solar 

cycle and the structure of rotating magnetic stars. The 

general theory of rotating fluids has received growing 

interest during last decade because of its application in 

cosmic and geophysical science. MHD in the present form is 

due to pioneer contribution of several notable authors like 

Alfven[1], Cowling[2]. The MHD Stoke’s or Rayleigh 

problem was first solved by Rossow [3] without taking into 

account the induced magnetic field. With the induced 

magnetic field, it was solved by Nanda and Sundaram 

[4],Chang and Yen[5] and Roscizewski [6]. Steady state 

channel flows of ionized gases were studied by Sato [7]. The 

effect of Hall current on MHD Rayleigh’s problem in 

ionized gas where studied by Mohanty [8]. Schlicting [9] has 

studied the unsteady flow due to an impulsive motion of an 

infinite plate in a fluid of an infinite extent. MHD flow past 

a uniformly accelerated plate under a transverse magnetic 

field was studied by Gupta [10]. Magnetohydrodynamic 

Rayleigh problem with Hall effect was studied by Haytham 

Sulieman [11]. Effect of Hall current and rotation on 

unsteady MHD couette flow in the presence of an inclined 

Magnetic field was studied by Seth, Nandkeolyar and Ansari 

[12]. Hall Effect on transient MHD flow past a vertical plate 

was analysed by Ahmed and Das [13]. In this study we have 

considered the Magnetohydrodynamic Rayleigh Problem 

with Hall Effect and Rotation over a porous plate in the 

presence of an Inclined Magnetic field 

 

2. Formulation of the Problem 
 

Consider the flow of an incompressible electrically 

conducting, viscous fluid past an infinite and insulated 

porous flat plate occupying the plane y = 0. Initially the 

fluid and the plate rotate in unison with a uniform angular 

velocity Ω about the y - axis normal to the plane. The 𝑥-axis 

is taken in the direction of the motion of the plate and 𝑧 – 

axis lying on the plate normal to both 𝑥 and y – axis. 

Relative to the rotating fluid, the plate is impulsively started 

from rest and set into motion with uniform acceleration in its 

own plane along the 𝑥 - axis. A uniform magnetic field 𝐻0 is 

applied in a direction which makes an angle 𝜃 with the 

positive direction of 𝑦 - axis in the 𝑥𝑦 − plane. 

 

Here the velocity vector 𝑞 =(u,0,v), magnetic induction 

𝐻 =(𝐻0 𝑠𝑖𝑛 ,  𝐻0𝑐𝑜𝑠, 0), Electro static field 𝐸 =(𝐸𝑥 , 0, 𝐸𝑧), 
Uniform angular velocity Ω=(0,Ω𝑦 ,0) (2.1) 

Governing equations are: 

 ∇. 𝑞 =0                                (2.2) 

 
𝜕𝑞 

𝜕𝑡
+  𝑞 . ∇ q + 2Ω× q   

 = −
1


∇P + ∇2q +

1


J × H  - 

𝛾

𝑘
 q             (2.3) 

 ∇ × 𝐻 = µ 𝐽                        (2.4) 

 ∇ × 𝐸 = −
𝜕𝐻    

𝜕𝑡
                                (2.5) 

 ∇. 𝐻 = 0                                     (2.6) 

 
𝐽


=  𝐸 + 𝑞 × 𝐻 −

𝐽×𝐻

𝑛.𝑒
                           (2.7) 

where  is the electrical conductivity. 

Here 𝐽 is the current density, t is the time,  is density,  is 

kinematic viscosity, e is electric charge, m is mass of an 

electron, n is the electron number density,  is the mean 

collision time , 𝑘 is the permeability of the fluid and µ is 

magnetic permeability.  

The initial and boundary conditions are  

 𝑡 ≤ 0: 𝑢 = 0, 𝑣 = 0 for 𝑦 ≥ 0,  
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 𝑡 > 0: 𝑢 = 𝑈0, 𝑣 = 0 for 𝑦 = 0,  

 𝑢 → 0: 𝑣 = 0 as 𝑦 → ∞ (2.8) 

Now introducing the non-dimensional quantities 

𝑦∗ =
𝑈0 .𝑦


, 𝑢∗ =

𝑢

𝑈0
, 𝑣∗ =

𝑣

𝑈0
, 𝑡∗ =

𝑈0
2𝑡


 (2.9) 

The equation of motion (2.3) in component term becomes 
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑦2 −
 𝐻0

2 𝑐𝑜𝑠 2 

𝑈0
2 1+22𝑐𝑜𝑠 2  

 𝑢 +  𝑣 𝑐𝑜𝑠  −
2

𝑈0
2 𝑣Ω𝑦 −

𝛾2

𝑘𝑈0
2 𝑢 (2.10) 

 
𝜕𝑣

𝜕𝑡
=

𝜕2𝑣

𝜕𝑦2 +
 𝐻0

2𝑐𝑜𝑠 2 

𝑈0
2 1+22𝑐𝑜𝑠 2  

 𝑢 𝑐𝑜𝑠 −  𝑣 +
2

𝑈0
2 𝑢Ω𝑦 −

𝛾2

𝑘𝑈0
2 𝑣 (2.11)  

Now let 𝑀2 =
 𝐻0

2

𝑈0
2  is the Hartman number, 𝑁 =  is the 

Hall Parameter, 𝐾𝑝 =
𝛾2

𝑘𝑈0
2 is the porosity parameter and 

𝐾2 =
 Ω𝑦

𝑈0
2  is the Rotation parameter i.e., the reciprocal of 

Ekmann number. The initial and boundary conditions are 

 𝑢 0, 𝑦 =  𝑣 0, 𝑦 =  0;  
 𝑢 𝑡, 0 = 1, 𝑣 𝑡, 0 = 0 

𝑢 𝑡, 𝑦 and 𝑣 𝑡, 𝑦 → 0 as 𝑦 → ∞ (2.12)  

Now multiplying both sides of equation (2.10) and (2.11) by 

𝑒−𝑠𝑡  and integrating from 0 to ∞  with respect to 𝑡 we get 

𝑑2𝑢 

𝑑𝑦2 −  
𝑀2𝑐𝑜𝑠 2 

1+𝑁2𝑐𝑜𝑠 2 
+ 𝑠 + 𝐾𝑝 𝑢 =  (

𝑁𝑀2𝑐𝑜𝑠 3 

1+𝑁2𝑐𝑜𝑠 2 
+ 2𝐾2)𝑣  

(2.13) 

 
𝑑2𝑣 

𝑑𝑦2 −  
𝑀2 𝑐𝑜𝑠 2 

1+𝑁2𝑐𝑜𝑠 2 
+ 𝑠 + 𝐾𝑝 𝑣 = −(

𝑁𝑀2𝑐𝑜𝑠 3 

1+𝑁2𝑐𝑜𝑠 2 
+ 2𝐾2)𝑢  

(2.14) 

where 𝑢  𝑠, 𝑦 =  𝐿 𝑢(𝑡, 𝑦) =  𝑢 𝑡, 𝑦 𝑒−𝑠𝑡∞

0
𝑑𝑡, 𝑣  𝑠, 𝑦 =

 𝐿 𝑣(𝑡, 𝑦) =  𝑣 𝑡, 𝑦 𝑒−𝑠𝑡∞

0
𝑑𝑡 

By introducing the complex function 𝑞 = 𝑢 + 𝑖𝑣 , then 

equation (2.10) and (2.11) can be combined into the single 

equation 
𝑑2𝑞 

𝑑𝑦2 −  
𝑀2𝑐𝑜𝑠 2 

1+𝑁2𝑐𝑜𝑠 2 
+ 𝑠 + 𝐾𝑝 𝑞 = −𝑖(

𝑁𝑀2𝑐𝑜𝑠 3 

1+𝑁2𝑐𝑜𝑠 2 
+ 2𝐾2)𝑞  

(2.15)  

 

3. Analytical Solution 
 

By introducing the complex function 𝑞 = 𝑢 + 𝑖𝑣 , then 

equation (2.13) and (2.14) becomes 
𝜕𝑞

𝜕𝑡
=

𝜕2𝑞

𝜕𝑦2 −   
𝑀2𝑐𝑜𝑠 2 

1+𝑁2𝑐𝑜𝑠 2 
+ 𝐾𝑝  1 −  𝑖𝑁 𝑐𝑜𝑠 − 2𝑖𝐾2 𝑞 

(3.1)  

The initial and boundary conditions take the form 𝑞 0, 𝑦 =
 0, 𝑞 𝑡, 0 =  1,  

 𝑞 𝑡, 𝑦 → 0 𝑎𝑠 𝑦 → ∞                     (3.2) 

Using the abbreviation 

 𝛼 =  −   
𝑀2𝑐𝑜𝑠 2 

1+𝑁2𝑐𝑜𝑠 2 
+ 𝐾𝑝  1 − 𝑖𝑁𝑐𝑜𝑠 −  2𝑖𝐾2   

Equation (3.1) can be written as 
𝜕𝑞

𝜕𝑡
=

𝜕2𝑞

𝜕𝑦2 + 𝛼𝑞                                 (3.3) 

Let 𝜙 𝑡, 𝑦 =  𝑒−𝛼𝑡  𝑞(𝑡, 𝑦)                 (3.4)  

From (3.3) we get 
𝜕𝜙

𝜕𝑡
=

𝜕2𝜙

𝜕𝑦2                    (3.5)  

From equations (3.2) and (3.4) we conclude that 𝜙 0, 𝑦 =
 0, 𝜙 𝑡, 0 =  𝑒−𝛼𝑡 ,  

𝜙 𝑡, 𝑦 → 0 as y →∞                            (3.6) 

To solve (3.5) subject to the initial and boundary conditions 

(3.6) we apply the Laplace transform method and obtain the 

solution as 

𝑞 𝑡, 𝑦 = 𝑒𝑎𝑡  cos 𝑏𝑡  𝑒𝑟𝑓𝑐  
𝑦

2 𝑡
  

−  𝑒𝑎
𝑡

0

 𝑒𝑟𝑓𝑐  
𝑦

2 
   𝑎 cos 𝑏

−  𝑏 sin 𝑏 𝑑 

+ 𝑖  𝑒𝑎𝑡 sin 𝑏𝑡 𝑒𝑟𝑓𝑐  
𝑦

2 𝑡
  

−  𝑒𝑎
𝑡

0

 𝑒𝑟𝑓𝑐  
𝑦

2 
   𝑎 sin 𝑏 

+  𝑏 cos 𝑏 𝑑 

where α = a + ib with a= −
𝑀2𝑐𝑜𝑠 2 

1+𝑁2𝑐𝑜𝑠 2 
+ 𝐾𝑝  , 𝑏 =

 
𝑁𝑀2𝑐𝑜𝑠 3

1+𝑁2𝑐𝑜𝑠 2
+ 2𝐾2 and 

 𝑒𝑟𝑓𝑐 𝑥 = 1 − erf 𝑥 =  
2

 𝜋
 𝑒−𝑢2∞

𝑥
𝑑𝑢  

 

In order to get a clear understanding of the flow fluid we 

have carried out numerical calculations of equation (2.15). 

The boundary value problem can be stated as  

 

 
𝑑2𝑞 

𝑑𝑦2 − 𝑞 = 0                         (3.7)  

𝑞  0, 𝑠 =  
1

𝑠
, 𝑞  ∞, 𝑠 = 0  

 Where  

  =   
𝑀2𝑐𝑜𝑠 2 

1+𝑁2𝑐𝑜𝑠 2 
+ 𝑠 +  𝐾𝑝 − 

 𝑖  
𝑁𝑀2𝑐𝑜𝑠 3 

1+𝑁2𝑐𝑜𝑠 2 
+ 2𝐾2                      (3.8) 

To ensure that the Laplace transforms are well-defined, it 

should be assumed that 𝑠 > 0. This implies 

 𝑅𝑒  =  
𝑀2𝑐𝑜𝑠 2 

1+𝑁2𝑐𝑜𝑠 2 
+ 𝑠 > 0. Hence there exists  in the 

complex number such that 2 =  with 𝑅𝑒  < 0. 
Furthermore 

 𝑞  𝑦, 𝑠 =  
𝑒𝑦

𝑠
                               (3.9)  

satisfy the boundary value problem (3.7) and (3.8). For 

𝑦 = 0 we have  

𝑞  0, 𝑠 =  
1

𝑠
=  1. 𝑒−𝑠𝑡  𝑑𝑡

∞

0

 

 =  (1 + 0𝑖). 𝑒−𝑠𝑡  𝑑𝑡
∞

0

  

Thus 𝑢 0, 𝑡 ≡ 1 and 𝑣(0, 𝑡) ≡ 0 for all 𝑡.  

Recall that the inverse Laplace transform is  

𝑞 𝑦, 𝑡 =
1

2𝜋𝑖
 𝑞 
+𝑖∞

−𝑖∞
(𝑦, 𝑠)𝑒𝑠𝑡𝑑𝑠  

Where  > 0 is chosen so that all the singularities of 𝑞 (𝑦, 𝑠) 

are to the left of . The above integral is over the vertical line 

z= in the complex plane. Since 𝑞  𝑦, 𝑠 =  
𝑒 𝑦

𝑠
, we can 

choose  to be any positive number. In the calculations 

below we choose =0.25. 

 

We will define 𝑞 strictly as a function of 𝑡 using 

Mathematic’s NIntegrate command. We will approximate 

the integral above by integrating from 0.25 – 500i to 0.25 + 

500i. 

 

The effect of the Hall parameter 𝑁, the Hartmann number 

𝑀, the angle of inclination 𝜃, the porosity parameter 𝐾𝑝  and 
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the rotation parameter  𝐾2 in the velocity components 𝑢 and 

𝑣 are illustrated in the following figures  

 
Figure 1: Effect of Hartmann number in 𝑢 with 𝐾𝑝  variation 

and with N=1, y=1, t=0.5,  =30, 𝐾2=1 

 

 
Figure 2: Effect of Hartmann number in 𝑣 with 𝐾𝑝  variation 

and with N=1, y=1, t=0.5,  =30, 𝐾2=1 

 

  
Figure 3: Effect of Hall Parameter in 𝑢 with 𝐾𝑝  variation 

and with M=1, y=1, t=0.5,  =30, 𝐾2=1 

 

 
Figure 4: Effect of Hall Parameter in 𝑣 with 𝐾𝑝  variation 

and with M=1, y=1, t=0.5,  =30, 𝐾2=1 

 
Figure 5: Effect of t in 𝑢 with 𝐾𝑝  variation and with M=1, 

y=1, N=1,  =30, 𝐾2=1 

 

 
Figure 6: Effect of t in 𝑣 with 𝐾𝑝  variation and with M=1, 

y=1, N=1,  =30, 𝐾2=1 

 

 
Figure 7: Effect of 𝐾2 in 𝑢 with 𝐾𝑝  variation and with M=1, 

y=1, N=1,  =30, t=0.5 

 

  
Figure 8: Effect of 𝐾2 in 𝑣 with 𝐾𝑝  variation and with M=1, 

y=1, N=1,  =30, t=0.5 
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Figure 9: Effect of 𝜃   in 𝑢 with 𝐾𝑝  variation and with M=1, 

y=1, N=1, 𝐾2=1, t=0.5 

 

 
Figure 10: Effect of 𝜃   in 𝑣 with 𝐾𝑝  variation and with M=1, 

y=1, N=1, 𝐾2=1, t=0.5 

 

  
Figure 11: Effect of 𝑦   in 𝑢 with 𝐾𝑝  variation and with M=1, 

𝜃=30, N=1, 𝐾2=1, t=0.5 

 

 
Figure 12: Effect of 𝑦   in 𝑣 with 𝐾𝑝  variation and with M=1, 

𝜃=30, N=1, 𝐾2=1, t=0.5 

 

4. Conclusion 

 
From the above figures 1 to 12, we conclude that the axial 

and transverse velocity components 𝑢 and 𝑣 increases with 

the increase in Hall Parameter, Hartmann number, Ekmann 

number, y and 𝑡 with respect to the increase of Porosity 

parameter.  
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