
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Implementation of Hadoop Based Framework for

Parallel Processing of Biological Data

Praveen Kumar B
1
, Nirmala Bariker

2

1Department of CS&E, VTU University, MITE Moodbidre, Karnataka, India

2Assistant Professor, Department of CS&E, VTU University, MITE Moodbidre, Karnataka, India

Abstract: Bioinformatics is challenged by the fact that traditional analysis tools have difficulty in processing large-scale data from

high-throughput sequencing. Hadoop is designed to process large data sets (petabytes). It becomes a bottleneck, when handling massive

small files because the name node utilize more memory to store the metadata of files and the data nodes consumes more CPU time to

process massive small files. The open source Apache Hadoop project, which in this paper, presenting the Optimized Hadoop, consists of

Merge Model to merge massive small files into a single large file and introduced the efficient indexing mechanism and adopts the

MapReduce frame-work using decision classification rule for analysis and Diagnosis of Iris Plants data through a distributed file system

to achieve scalable, efficient and reliable computing performance on Linux clusters of low cost commodity machines. Our experimental

result shows that Optimized Hadoop improves performance of processing small files drastically up to 90.83% and effectively reduces the

memory utilization of the name node to store the metadata of files.

Keywords: Hadoop, Hadoop Distributed File System, Map, Reduce, Small Files, Iris plants data, Decision Tree, Classification rule

1. Introduction

In recent years, Hadoop has become a most popular high

performance distributed computing paradigm for large scale

data analytics [1]. The Hadoop architecture consists of the

Hadoop Distributed File System (HDFS) and a MapReduce

programming model. HDFS is high fault tolerance, high

throughput, and high reliability, designed to deploy on

commodity hardware. MapReduce is a programming model

proposed by Google [2], to process large data sets. Hadoop is

excellent in handling large files of data; HDFS divides the

input data into data blocks of size 64 MB. NameNode stores

the metadata of the data blocks and DataNodes stores the

data blocks. These data blocks are processed by the

MapReduce. Hadoop is inefficient in handling massive small

files, whose size ranges from 10KB to 5 MB. Massive small

files are generated by bio-sensors, word docs, power point,

flash files, images of maps, MP3, video clips and so on [5].

These kinds of files will bring serious problems to Hadoop

performance. First, storing too many small files into Hadoop

becomes overhead in terms of memory usage of metadata

stored in the NameNode ; this will impact on the size of the

memory in the NameNode. Secondly, more number of

MapReduce task created to process massive small files and it

creates overhead between MapReduce tasks and CPU time.

To overcome these problems, the author proposes the

Optimized Hadoop consists of Merge model. It merges all

the input files into a single large file and this single large file

moving into HDFS. HDFS divides the single large file into

data blocks of size 64 MB. NameNode stores metadata of

files and DataNode store data blocks. The Optimized

Hadoop reduces memory usage by the NameNode to store

metadata, reduces overhead created between MapReduce

tasks and improves the performance of DataNodes to process

data blocks.

The major contributions of this paper are summarized as

follows:

 Effective number of MapReduce task created to process

HDFS data blocks, this drastically reduces MapReduce

task overhead and the total CPU time.

 Efficient metadata management will successfully reduce

the memory utilization of the NameNode to store metadata

files.

 Optimized Hadoop is not just suitable for biological data

files; it can be applied universally to all types of small

files.

The rest of this paper is organized as follows. Section II

describes Literature Survey. Section III explores the small

files problems. Section IV provides the overview of Decision

tree and classification rule for Iris plants data. Section V

provides the proposed model. Section VI presents

performance evaluation and discussion. Conclusion and

future work are drawn in Section VII.

2. Literature Survey

A. Hadoop Distributed File System

Hadoop two fundamental subprojects are the HDFS and the

MapReduce. The distributed file system named by Hadoop

Distributed File System (HDFS) is a designed to run on

commodity hardware [3]. The block size of HDFS is much

larger than that of normal file system i.e. 64MB by default.

The reason for the large size of blocks is to reduce the

number of disk seeks. This is not a POSIX compliant file

system, and once data is written to file system it can't be

modified (a write-once, read-many access model). HDFS

protects data by replicating data blocks into multiple nodes,

with a default replication factor of 3. One major usage of

HDFS is which has very good durability HDFS has a

master/slave architecture which consists of two important

agents, NameNode and DataNode. Figure 1 shows the

Hadoop Distributed File System. The master, called the

NameNode which is responsible for managing file system

namespace, maintains. The file system tree and all metadata

and file system actions within the HDFS (e.g. Files list and

Paper ID: SUB153232 1087

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

files sub-blocks location information) and there are number

of slaves, called the DataNodes which are responsible for

actual data I/O. The DataNodes service all read/write and file

replication requests based on direction from the NameNode.

Because Hadoop keeps all file system metadata in main

memory, it is necessary for the NameNode to be have own

server, this way file access is not slowed because of strain on

the NameNode from serving metadata requests. Without the

NameNode it is not possible to access the file. So it becomes

very important to make NameNode resilient to failure.

Figure 1: Hadoop Distributed File System

B. MapReduce

MapReduce is a programming model from Google for the

purpose of supporting its critical services such as web search,

log analysis, data mining, etc [2]. This model designed to

efficiently execute programs on large clusters, by exploiting

data parallelism and comprises of Map phase and Reduce

phase. In Map phase mapper must be able to ingest the input

and process the input record and that processed record will

be forwarded to Reduce Phase, there task will reduced. The

Map function takes in a key/value pair and outputs an

intermediate list of key/value pairs i.e. Map (k1,v1) → list

(K2, v2). The Reduce functions will then take all values

associated to the same key and produce the final output list

of key/values i.e. Reduce (K2, list (v2)) → list (v3). . The

map creates several output files, those records are sorted by

key. One of the important advantages of the above schema is

that the parallelization complexity is handled. But this

advantage often leads to loss of flexibility. Every job must

consist of exactly one Map function and followed by an

optional Reduce function, these steps cannot be executed in a

different order. And also if an algorithm requires multiple

Map and Reduce steps that can be enforced by separate jobs,

and data can only be transferred from one job to the next,

through the file system (HDFS). In the initial

implementations of Hadoop, Map Reduce is designed as a

master-slave architecture which incorporated by JobTracker

and TaskTrackers. The JobTracker is the master which

carries off the cluster resources, scheduling jobs, monitoring

progress and dealing with fault-tolerance along with that it

will distribute the tasks and their input split to the various

trackers. On each of the slave nodes, there exists a

TaskTracker which is responsible for launching parallel tasks

and reporting their status to the JobTracker. The TaskTracker

service will actually run our map and reduce tasks.

3. Problem Definition

This section explores the impact of small files on the

Hadoop.

A. Impact on time taken to move files into HDFS

Before running the Hadoop jobs, input files are copying from

local file system into Hadoop Distributed File System.

Larger numbers of small files will take more time to copy

from local file system into Hadoop Distributed File System.

B. Impact on memory usage of the NameNode

Hadoop is a Master/Slave architecture consists of one Master

(NameNode) and many slaves (DataNodes). Hadoop

distributed File System divides the input data into data

blocks. ameNode stores the metadata of each block and

DataNodes stores the ata blocks. Each metadata consumes

about 150 bytes of the NameNode memory [8].For larger

number of small files more numbers of metadata created and

it consumes more memory of the NameNode.

C. Impact on time taken to process files

HDFS divides the larger input file into data blocks of size 64

MB (i.e. by default) and these data blocks were processed by

the MapReduce. Small files, whose size less than 64 MB will

occupy one data block each and more number of MapReduce

tasks created to process massive data blocks. It creates

overhead between MapReduce tasks and more time taken to

process files

4. Methodology

Classification [2] is one of the major data mining processes

which maps data into predefined groups. The IRIS dataset

classifies three different classes of IRIS plant by performing

pattern classification [5]. The IRIS data set includes three

classes of 50 objects each, where each class refers to a type

of IRIS plant. The attributed that already been predicted

belongs to the class of IRIS plant. The list of attributes

present in the IRIS can be described as categorical, nominal

and continuous. The experts have mentioned that there isn‟t

any missing value found in any attribute of this data set. The

data set is complete. This project makes use of the well

known IRIS dataset, which refers to three classes of 50

instances each, where each class refers to a type of IRIS

plant. The first of the classes is linearly distinguishable from

the remaining two, with the second two not being linearly

separable from each other. The 150 instances, which are

equally separated between the three classes, contain the

following four numeric attributes:

 1. Sepal length – continuous

 2. Sepal width - continuous

 3. Petal length - continuous

 4. Petal width – continuous and

The fifth attribute is the predictive attributes which is the

class attribute that means each instance also includes an

identifying class name, each of which is one of the

following: IRIS Setosa, IRIS Versicolour, or IRIS Virginica.

Paper ID: SUB153232 1088

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The expectation from mining IRIS data set would be

discovering patterns from examining petal and sepal size of

the IRIS plant and how the prediction was made from

analyzing the pattern to form the class of IRIS plant. By

using this pattern and classification, the unknown data can be

predicted more precisely in upcoming years. This can

classify the type of IRIS plant by examining the sizes of

petal and sepal. Sepal width has positive relationship with

Sepal length and petal width has positive relationship with

petal length. This pattern is identified with bare eyes or

without using any tools and formulas. It is realized that the

petal width is always smaller then petal length and sepal

width also smaller then sepal length.

5. Implementation

The proposed model extends Hadoop and has been named as

Optimized Hadoop. The basic idea of our proposed

Optimized Hadoop consists of Merge Model. The Merge

Model algorithm is as follows:

1. Initially returns the array of abstract path names defining

the files in the directory as an input directory.

2. Loop for i=0; i<files.length; increment i

 a) Get the actual path of files and read them

 b) Insert the lines into the output file.

 c) Read the file till end of file while (line!=null)

3. Display the message that files is merged or if any error

exception is shown.

In the Optimized Hadoop, Merge Model combines massive

small files into a single large file. This large file moved into

HDFS. HDFS divides a large file into data blocks of size 64

MB (i.e. by default). Each data blocks are processed by the

MapReduce.

The Optimized Hadoop solves the small files problems as

follows:

1. Reduces time to move file from local file system to

Hadoop File System.

2. Minimizes the memory usage by the NameNode to store

metadata of files.

3. Improves the performance of processing for small files

6. Results and Discussion

The Performance The experimental environment is built on a

cluster with five machines. One machine acts as the

NameNode and the other four machine acts as the Data

Nodes. Each of these machines has Intel® Xeon®

E5520@2.27 GHz

Processor 2 GB RAM, and 500 GB SATA hard disk and

operating system is Ubuntu 10.0.4, Hadoop version is 1.0.3

and the java version is 1.6.0. The number of replicas is set to

2 and the HDFS block size is 64MB

B. Workload Overview

The workload consists of 1,018 iris plants data data files

which are of size 2 GB; they are generated by Bio sensors

located across the globe [4]. The File size ranges from 250

KB to 5000 KB. Figure 2 shows the distribution of file size.

A. Experiment Environment

Figure 2: Size distribution of files

C. Performance Measurement Parameters

The performance of the Hadoop cluster was measured on the

following parameters.

 1. Time taken to move files from local file system to HDFS

 2. Memory usage of the NameNode to store metadata.

 3. Time taken in the MapReduce phase to process files.

D. Time taken to move files in to the HDFS

Files moving operation was performed on both the original

Hadoop and optimized Hadoop. There we recorded the time

taken to store files into the Hadoop Distributed File System.

Table I shows the time taken S by the original Hadoop

(traditional) and the optimized Hadoop (proposed) to move

files into HDF. Figure 3 shows the chart of the time taken by

the original Hadoop (traditional) and the optimized Hadoop

(proposed) to move files in to HDFS.

Table 1: Time taken to move files in to the Hadoop

Distributed File

Technique File size in GB
Time Taken in

seconds

Original Hadoop

(traditional)
02 162

Optimized Hadoop

(proposed)
02 71

Figure 3: Time taken to move files in to Hadoop Distributed

File System

Paper ID: SUB153232 1089

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

E. Measurement of memory Usage of the NameNode

Hadoop Distributed File System divides the input data into

data blocks of size 64 MB (i.e. by default). It stores the

metadata of each block in the NameNode (Master Node) and

all the data blocks in the DataNodes (Slave Nodes). In the

NameNode, metadata of each block consumes around 150

bytes of memory.

In the case study of Iris plants data contains1018 small files;

total size of these files is 2 GB. In the original Hadoop, the

HDFS created 1018 data blocks, because the input data

contains 1018 small files whose size less than 64 MB.

Memory usage of the NameNode to store 1018 metadata of

data blocks was 152700 bytes. In the optimized Hadoop

consists of the Merge module, it combines 1018 small files

into a single large file of size 2 GB and moved this into the

HDFS. HDFS divides 2 GB file into 32 data blocks. Memory

usage of the NameNode to store 32 metadata of data blocks

was 4800 bytes.

Table II shows the memory usage of the NameNode in the

original Hadoop (traditional) and in the optimized Hadoop

(proposed). Figure 4 shows the chart of the memory usage of

NameNode in the original Hadoop (traditional) and in the

optimized Hadoop (proposed).

Table 2: Memory usage of the NameNode
Technique Memory usage in bytes

Original Hadoop

(traditional)
152700

Optimized Hadoop

(proposed)
4,800

Figure 4: Memory usage of the NameNode

F. Time taken to process files.

Hadoop is designed to process large files. The task of

processing large numbers of files of smaller size degrades

the performance of Hadoop system. The case study of

Weather data analytics contains 1018 small files [8]; total

size of these files is 2 GB. When all these files are processed

individually, the Map phase takes a time of 3998 seconds

and the Reduce phase takes a time of 104 seconds. Hence

total CPU time taken is 4102 seconds. In our optimized

Hadoop, the Merge module merged these 1018 files into a

single large file of size 2 GB. To process this single large

file, the time taken by the Map phase is 340 seconds and by

the Reduce phase is 36 seconds, hence the total CPU time

taken is 376 seconds. The proposed optimized Hadoop

improves the performance 91.49%, 65.38% and 90.83 % of

Map time, Reduce time and total CPU time respectively.

Table 3: Comparison of Map, Reduce and Total CPU time

of the original Hadoop (traditional) and the optimized

Hadoop (proposed)

Technique

Full

size in

GB

Map time

in seconds

Reduce

time in

seconds

Total CPU

time in

seconds

Original

Hadoop

(trad-

tional)

02 3998 104 4102

Optimized

Hadoop

(proposed)

02 340 36 376

Figure 5: Chart of Map, Reduce and Total CPU time of the

original Hadoop (traditional) and the optimized Hadoop

(proposed)

7. Conclusion

Hadoop is deployed to process large files and suffers a

performance penalty while processing a large number of

small files. In addition, the memory usage of the NameNode

to store metadata increases rapidly and more time taken to

move files from local file system to Hadoop Distributed File

System. The proposed Optimize Hadoop inimizes the

memory usage of the NameNode to store the metadata of

files, reduces the time taken to move files from local file

system to Hadoop Distributed File System, efficiently

managed small files and enhance the performance of

processing inherently small input files. The experiment

results show that our Optimized Hadoop effectively

improves the efficiency of storing, managing and processing

small files. Our strong findings are as follows: (1) Time is

taken to move files from local file system to Hadoop

Distributed File System is reduced from 162 seconds to 71

seconds. (2) Memory usage by the NameNode to store

metadata has decreased from 1, 52,700 bytes to 4,800 bytes.

(3) Improves performance of processing small files

drastically up to 90.83%.

8. Future Scope

Our further work will include finding other parameters that

impact on the applications of big data in the health care

system have the potential of enhancing and accelerating

interactions among clinicians, administrators, lab directors,

logistic mangers, and researchers by saving costs, creating

better efficiencies based on outcome comparison, reducing

risks, and improving personalized care

Paper ID: SUB153232 1090

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] Apache Software Foundation. Official apache Hadoop

website, http://hadoop.apache.org/, Aug, 2012.

[2] Avcı Mutlu, Tülay Yıldırım (2003) „Microcontroller

based neural network realization and IRIS plant

classifier application‟, International XII. Turkish

Symposium on Artificial Intelligence and Neural

Network

[3] Jeffrey Dean and Sanjay Ghemawat, “MapReduce:

Simplified Data Processing on Large Clusters” in

Google, Inc.

[4] The Hadoop Architecture and Design,

Available:http://hadoop.apache.org/common/docs/r0.16.

4/hdfs_design. html, Aug, 2012.

[5] Fu, L.(1991) „Rule learning by searching on adapted

nets. In Proceedings of National Conference on

Artificial Intelligence‟ Anaheim, CA, USA, pp. 590-

595.

[6] National Bio data Center http://www.ncdc.noaa.gov/

[7] Bo Dong, Jie Qiu and Qinghua Zheng “A Novel

Approach to Improving the Efficiency of Storing and

Accessing Small Files on Hadoop: a Case Study by

PowerPoint Files” IEEE International Conference on

Services Computing, 978-0-7695-4126-6/10,2010.

[8] Hung-Chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D.

Stott Parker from Yahoo and UCLA, "Map-Reduce-

Merge: Simplified Data Processing on Large Clusters",

paper published in Proc. of ACM SIGMOD, pp. 1029–

1040, 2007.

[9] K. Schvachko, H. Kuang, S. Radia, R. Chansler. “The

Hadoop Distributed File System”. In Proceedings of

IEEE 26th symposium on Mass Storage Systems and

Technologies (MSST), Incline Village, Nevada, USA,

May 2010.

[10] Tom White, “The Small Files Problem”.

http://www.cloudera.com/blog/2009/02/the small files

problems,2009

[11] Chuck Lam, Hadoop in Action, 1st ed. Dec. 2010, pp. 8.

[12] Tom White, Hadoop: The Definitive Guide, 2nd ed.

O‟Reilly Media Yahoo Press, Jun. 2009, pp. 41 45.

Authors Profile

PRAVEEN KUMAR B completed the

bachelor‟s degree in Computer Science and

Engineering from Government Engineering

College (GECH), Hassan under Visvesvaraya

Technological University (VTU), Belgaum in 2013.

Pursuing M.Tech in Computer Science and Engineering at

Mangalore Institute of Technology and Engineering,

Mangalore under VTU, Belgaum.

Nirmala Y Bariker completed bachelors and

masters degree in Computer Science and

Engineering. Currently working as Assistant

Professor in Mangalore Institute of Technology,

Mangalore. She has published 4 research papers in National

and International conferences.

Paper ID: SUB153232 1091

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

