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Abstract: Bioinformatics is challenged by the fact that traditional analysis tools have difficulty in processing large-scale data from 

high-throughput sequencing. Hadoop is designed to process large data sets (petabytes). It becomes a bottleneck, when handling massive 

small files because the name node utilize more memory to store the metadata of files and the data nodes consumes more CPU time to 

process massive small files. The open source Apache Hadoop project, which in this paper, presenting the Optimized Hadoop, consists of 

Merge Model to merge massive small files into a single large file and introduced the efficient indexing mechanism and adopts the 

MapReduce frame-work using decision classification rule for analysis and Diagnosis of Iris Plants data through a distributed file system 

to achieve scalable, efficient and reliable computing performance on Linux clusters of low cost commodity machines. Our experimental 

result shows that Optimized Hadoop improves performance of processing small files drastically up to 90.83% and effectively reduces the 

memory utilization of the name node to store the metadata of files.  
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1. Introduction 
 

In recent years, Hadoop has become a most popular high 

performance distributed computing paradigm for large scale 

data analytics [1]. The Hadoop architecture consists of the 

Hadoop Distributed File System (HDFS) and a MapReduce 

programming model. HDFS is high fault tolerance, high 

throughput, and high reliability, designed to deploy on 

commodity hardware. MapReduce is a programming model 

proposed by Google [2], to process large data sets. Hadoop is 

excellent in handling large files of data; HDFS divides the 

input data into data blocks of size 64 MB. NameNode stores 

the metadata of the data blocks and DataNodes stores the 

data blocks. These data blocks are processed by the 

MapReduce. Hadoop is inefficient in handling massive small 

files, whose size ranges from 10KB to 5 MB. Massive small 

files are generated by bio-sensors, word docs, power point, 

flash files, images of maps, MP3, video clips and so on [5]. 

These kinds of files will bring serious problems to Hadoop 

performance. First, storing too many small files into Hadoop 

becomes overhead in terms of memory usage of metadata 

stored in the NameNode ; this will impact on the size of the 

memory in the NameNode. Secondly, more number of 

MapReduce task created to process massive small files and it 

creates overhead between MapReduce tasks and CPU time. 

To overcome these problems, the author proposes the 

Optimized Hadoop consists of Merge model. It merges all 

the input files into a single large file and this single large file 

moving into HDFS. HDFS divides the single large file into 

data blocks of size 64 MB. NameNode stores metadata of 

files and DataNode store data blocks. The Optimized 

Hadoop reduces memory usage by the NameNode to store 

metadata, reduces overhead created between MapReduce 

tasks and improves the performance of DataNodes to process 

data blocks. 

 

The major contributions of this paper are summarized as 

follows: 

 

 Effective number of MapReduce task created to process 

HDFS data blocks, this drastically reduces MapReduce 

task overhead and the total CPU time. 

 Efficient metadata management will successfully reduce 

the memory utilization of the NameNode to store metadata 

files. 

 Optimized Hadoop is not just suitable for biological data 

files; it can be applied universally to all types of small 

files. 

 

The rest of this paper is organized as follows. Section II 

describes Literature Survey. Section III explores the small 

files problems. Section IV provides the overview of Decision 

tree and classification rule for Iris plants data. Section V 

provides the proposed model. Section VI presents 

performance evaluation and discussion. Conclusion and 

future work are drawn in Section VII. 

 

2. Literature Survey 
 

A. Hadoop Distributed File System 

 

Hadoop two fundamental subprojects are the HDFS and the 

MapReduce. The distributed file system named by Hadoop 

Distributed File System (HDFS) is a designed to run on 

commodity hardware [3]. The block size of HDFS is much 

larger than that of normal file system i.e. 64MB by default. 

The reason for the large size of blocks is to reduce the 

number of disk seeks. This is not a POSIX compliant file 

system, and once data is written to file system it can't be 

modified (a write-once, read-many access model). HDFS 

protects data by replicating data blocks into multiple nodes, 

with a default replication factor of 3. One major usage of 

HDFS is which has very good durability HDFS has a 

master/slave architecture which consists of two important 

agents, NameNode and DataNode. Figure 1 shows the 

Hadoop Distributed File System. The master, called the 

NameNode which is responsible for managing file system 

namespace, maintains. The file system tree and all metadata 

and file system actions within the HDFS (e.g. Files list and 
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files sub-blocks location information) and there are number 

of slaves, called the DataNodes which are responsible for 

actual data I/O. The DataNodes service all read/write and file 

replication requests based on direction from the NameNode. 

Because Hadoop keeps all file system metadata in main 

memory, it is necessary for the NameNode to be have own 

server, this way file access is not slowed because of strain on 

the NameNode from serving metadata requests. Without the 

NameNode it is not possible to access the file. So it becomes 

very important to make NameNode resilient to failure. 

 

 
Figure 1: Hadoop Distributed File System 

 

B. MapReduce 

 

MapReduce is a programming model from Google for the 

purpose of supporting its critical services such as web search, 

log analysis, data mining, etc [2]. This model designed to 

efficiently execute programs on large clusters, by exploiting 

data parallelism and comprises of Map phase and Reduce 

phase. In Map phase mapper must be able to ingest the input 

and process the input record and that processed record will 

be forwarded to Reduce Phase, there task will reduced. The 

Map function takes in a key/value pair and outputs an 

intermediate list of key/value pairs i.e. Map (k1,v1) → list 

(K2, v2). The Reduce functions will then take all values 

associated to the same key and produce the final output list 

of key/values i.e. Reduce (K2, list (v2)) → list (v3). . The 

map creates several output files, those records are sorted by 

key. One of the important advantages of the above schema is 

that the parallelization complexity is handled. But this 

advantage often leads to loss of flexibility. Every job must 

consist of exactly one Map function and followed by an 

optional Reduce function, these steps cannot be executed in a 

different order. And also if an algorithm requires multiple 

Map and Reduce steps that can be enforced by separate jobs, 

and data can only be transferred from one job to the next, 

through the file system (HDFS). In the initial 

implementations of Hadoop, Map Reduce is designed as a 

master-slave architecture which incorporated by JobTracker 

and TaskTrackers. The JobTracker is the master which 

carries off the cluster resources, scheduling jobs, monitoring 

progress and dealing with fault-tolerance along with that it 

will distribute the tasks and their input split to the various 

trackers. On each of the slave nodes, there exists a 

TaskTracker which is responsible for launching parallel tasks 

and reporting their status to the JobTracker. The TaskTracker 

service will actually run our map and reduce tasks. 

 

3. Problem Definition 
 

This section explores the impact of small files on the 

Hadoop. 

 

A. Impact on time taken to move files into HDFS 

 

Before running the Hadoop jobs, input files are copying from 

local file system into Hadoop Distributed File System. 

Larger numbers of small files will take more time to copy 

from local file system into Hadoop Distributed File System. 

 

B. Impact on memory usage of the NameNode 

 

Hadoop is a Master/Slave architecture consists of one Master 

(NameNode) and many slaves (DataNodes). Hadoop 

distributed File System divides the input data into data 

blocks. ameNode stores the metadata of each block and 

DataNodes stores the ata blocks. Each metadata consumes 

about 150 bytes of the NameNode memory [8].For larger 

number of small files more numbers of metadata created and 

it consumes more memory of the NameNode. 

 

C. Impact on time taken to process files 

 

HDFS divides the larger input file into data blocks of size 64 

MB (i.e. by default) and these data blocks were processed by 

the MapReduce. Small files, whose size less than 64 MB will 

occupy one data block each and more number of MapReduce 

tasks created to process massive data blocks. It creates 

overhead between MapReduce tasks and more time taken to 

process files 

 

4. Methodology 
 

Classification [2] is one of the major data mining processes 

which maps data into predefined groups. The IRIS dataset 

classifies three different classes of IRIS plant by performing 

pattern classification [5]. The IRIS data set includes three 

classes of 50 objects each, where each class refers to a type 

of IRIS plant. The attributed that already been predicted 

belongs to the class of IRIS plant. The list of attributes 

present in the IRIS can be described as categorical, nominal 

and continuous. The experts have mentioned that there isn‟t 

any missing value found in any attribute of this data set. The 

data set is complete. This project makes use of the well 

known IRIS dataset, which refers to three classes of 50 

instances each, where each class refers to a type of IRIS 

plant. The first of the classes is linearly distinguishable from 

the remaining two, with the second two not being linearly 

separable from each other. The 150 instances, which are 

equally separated between the three classes, contain the 

following four numeric attributes: 

 

 1. Sepal length – continuous 

 2. Sepal width - continuous 

 3. Petal length - continuous 

 4. Petal width – continuous and 

 

The fifth attribute is the predictive attributes which is the 

class attribute that means each instance also includes an 

identifying class name, each of which is one of the 

following: IRIS Setosa, IRIS Versicolour, or IRIS Virginica. 
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The expectation from mining IRIS data set would be 

discovering patterns from examining petal and sepal size of 

the IRIS plant and how the prediction was made from 

analyzing the pattern to form the class of IRIS plant. By 

using this pattern and classification, the unknown data can be 

predicted more precisely in upcoming years. This can 

classify the type of IRIS plant by examining the sizes of 

petal and sepal. Sepal width has positive relationship with 

Sepal length and petal width has positive relationship with 

petal length. This pattern is identified with bare eyes or 

without using any tools and formulas. It is realized that the 

petal width is always smaller then petal length and sepal 

width also smaller then sepal length. 

  

5. Implementation 
 

The proposed model extends Hadoop and has been named as 

Optimized Hadoop. The basic idea of our proposed 

Optimized Hadoop consists of Merge Model. The Merge 

Model algorithm is as follows: 

 

1. Initially returns the array of abstract path names defining 

the files in the directory as an input directory. 

2. Loop for i=0; i<files.length; increment i 

 a) Get the actual path of files and read them 

 b) Insert the lines into the output file. 

 c) Read the file till end of file while (line!=null) 

3. Display the message that files is merged or if any error 

exception is shown. 

 

In the Optimized Hadoop, Merge Model combines massive 

small files into a single large file. This large file moved into 

HDFS. HDFS divides a large file into data blocks of size 64 

MB (i.e. by default). Each data blocks are processed by the 

MapReduce. 

 

The Optimized Hadoop solves the small files problems as 

follows: 

 

1. Reduces time to move file from local file system to 

Hadoop File System. 

2. Minimizes the memory usage by the NameNode to store 

metadata of files. 

3. Improves the performance of processing for small files 

 

6. Results and Discussion 
 

The Performance The experimental environment is built on a 

cluster with five machines. One machine acts as the 

NameNode and the other four machine acts as the Data 

Nodes. Each of these machines has Intel® Xeon® 

E5520@2.27 GHz 

 

Processor 2 GB RAM, and 500 GB SATA hard disk and 

operating system is Ubuntu 10.0.4, Hadoop version is 1.0.3 

and the java version is 1.6.0. The number of replicas is set to 

2 and the HDFS block size is 64MB 

 

B. Workload Overview 

The workload consists of 1,018 iris plants data data files 

which are of size 2 GB; they are generated by Bio sensors 

located across the globe [4]. The File size ranges from 250 

KB to 5000 KB. Figure 2 shows the distribution of file size. 

A. Experiment Environment 

 

 
Figure 2: Size distribution of files 

 

C. Performance Measurement Parameters 

 

The performance of the Hadoop cluster was measured on the 

following parameters. 

 

 1. Time taken to move files from local file system to HDFS 

 2. Memory usage of the NameNode to store metadata. 

 3. Time taken in the MapReduce phase to process files. 

 

D. Time taken to move files in to the HDFS 

 

Files moving operation was performed on both the original 

Hadoop and optimized Hadoop. There we recorded the time 

taken to store files into the Hadoop Distributed File System. 

Table I shows the time taken S by the original Hadoop 

(traditional) and the optimized Hadoop (proposed) to move 

files into HDF. Figure 3 shows the chart of the time taken by 

the original Hadoop (traditional) and the optimized Hadoop 

(proposed) to move files in to HDFS. 

 

Table 1: Time taken to move files in to the Hadoop 

Distributed File 

Technique File size in GB 
Time Taken in 

seconds 

Original Hadoop 

(traditional) 
02 162 

Optimized Hadoop  

(proposed) 
02 71 

 

 
Figure 3: Time taken to move files in to Hadoop Distributed 

File System 

Paper ID: SUB153232 1089

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 4, April 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

E. Measurement of memory Usage of the NameNode  

 

Hadoop Distributed File System divides the input data into 

data blocks of size 64 MB (i.e. by default). It stores the 

metadata of each block in the NameNode (Master Node) and 

all the data blocks in the DataNodes (Slave Nodes). In the 

NameNode, metadata of each block consumes around 150 

bytes of memory. 

 

In the case study of Iris plants data contains1018 small files; 

total size of these files is 2 GB. In the original Hadoop, the 

HDFS created 1018 data blocks, because the input data 

contains 1018 small files whose size less than 64 MB. 

Memory usage of the NameNode to store 1018 metadata of 

data blocks was 152700 bytes. In the optimized Hadoop 

consists of the Merge module, it combines 1018 small files 

into a single large file of size 2 GB and moved this into the 

HDFS. HDFS divides 2 GB file into 32 data blocks. Memory 

usage of the NameNode to store 32 metadata of data blocks 

was 4800 bytes. 

 

Table II shows the memory usage of the NameNode in the 

original Hadoop (traditional) and in the optimized Hadoop 

(proposed). Figure 4 shows the chart of the memory usage of 

NameNode in the original Hadoop (traditional) and in the 

optimized Hadoop (proposed). 

 

Table 2: Memory usage of the NameNode 
Technique Memory usage in bytes 

Original Hadoop 

(traditional) 
152700 

Optimized Hadoop 

(proposed) 
4,800 

 

 
Figure 4: Memory usage of the NameNode 

 

F. Time taken to process files. 

 

Hadoop is designed to process large files. The task of 

processing large numbers of files of smaller size degrades 

the performance of Hadoop system. The case study of 

Weather data analytics contains 1018 small files [8]; total 

size of these files is 2 GB. When all these files are processed 

individually, the Map phase takes a time of 3998 seconds 

and the Reduce phase takes a time of 104 seconds. Hence 

total CPU time taken is 4102 seconds. In our optimized 

Hadoop, the Merge module merged these 1018 files into a 

single large file of size 2 GB. To process this single large 

file, the time taken by the Map phase is 340 seconds and by 

the Reduce phase is 36 seconds, hence the total CPU time 

taken is 376 seconds. The proposed optimized Hadoop 

improves the performance 91.49%, 65.38% and 90.83 % of 

Map time, Reduce time and total CPU time respectively. 

Table 3: Comparison of Map, Reduce and Total CPU time 

of the original Hadoop (traditional) and the optimized 

Hadoop (proposed) 

Technique 

Full 

size in 

GB 

Map time 

in seconds 

Reduce 

time in  

seconds 

Total CPU 

time in 

seconds 

Original 

Hadoop 

(trad- 

tional) 

02 3998 104 4102 

Optimized  

Hadoop 

(proposed) 

02 340 36 376 

  

 
Figure 5: Chart of Map, Reduce and Total CPU time of the 

original Hadoop (traditional) and the optimized Hadoop 

(proposed) 

 

7. Conclusion 
 

Hadoop is deployed to process large files and suffers a 

performance penalty while processing a large number of 

small files. In addition, the memory usage of the NameNode 

to store metadata increases rapidly and more time taken to 

move files from local file system to Hadoop Distributed File 

System. The proposed Optimize Hadoop inimizes the 

memory usage of the NameNode to store the metadata of 

files, reduces the time taken to move files from local file 

system to Hadoop Distributed File System, efficiently 

managed small files and enhance the performance of 

processing inherently small input files. The experiment 

results show that our Optimized Hadoop effectively 

improves the efficiency of storing, managing and processing 

small files. Our strong findings are as follows: (1) Time is 

taken to move files from local file system to Hadoop 

Distributed File System is reduced from 162 seconds to 71 

seconds. (2) Memory usage by the NameNode to store 

metadata has decreased from 1, 52,700 bytes to 4,800 bytes. 

(3) Improves performance of processing small files 

drastically up to 90.83%.  

 

8. Future Scope 
 

Our further work will include finding other parameters that 

impact on the applications of big data in the health care 

system have the potential of enhancing and accelerating 

interactions among clinicians, administrators, lab directors, 

logistic mangers, and researchers by saving costs, creating 

better efficiencies based on outcome comparison, reducing 

risks, and improving personalized care  
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